

The Future of All-IP Broadband Wireless Mobile Networks

ASWN 2004 Presentation August 11, 2004

Outline

- Market Trends
- Technology Evolution
- Emerging Services and Applications

Market Trends

The Growth of Data Traffic

- Data Traffic is Growing. Voice Traffic is Stabilizing.
- It is not all about voice !!

ASWN 2004 Presentation

vana

The Growth of Data Traffic (Cont'd)

ASWN 2004 Presentation

rvana

The Growth of the ARPU

- Average Revenue Per User (ARPU) is Growing.
- But: ARPU/MByte is declining.
- While: Data Traffic Per User is Growing.
- → Wireless Network Cost-Effectiveness is Key.

The Growth of the ARPU (Cont'd)

Source: Company websites and Q4'03 Investor presentations. ARPU converted to USD. • High-Speed (1xEV-DO) ARPU of SKT, KTF and KDDI compared to each company's Low-Speed (1xRTT) data service.

High-Speed Delivers 4-5X ARPU of Low-Speed Subscribers

SKT's Data ARPU by Handset Type

'June' Data ARPU \$20.00, a CDMA2000 1xEV-DO-based Multimedia Service

- SKT June users posted almost 4.5 times higher data ARPU than average data ARPU of CDMA2000 1X
- June subscribers use CDMA2000 1xEV-DO handsets with VOD or MOD function enabled
- June phones account for about 50% of SKT's total CDMA2000 1xEV-DO handsets

Source: 2003 SKT Company Presentation

High-Speed Delivers 4-5X ARPU of Low-Speed Subscribers

KTF Monthly Voice and Data ARPU by Device Type Q4'03

Source: KTF Q4'03 Earnings Release

Page 9

ASWN 2004 Presentation

vana

The Effect of High-Speed on Subscriber Growth

- High-Speed data is attracting subscribers.
- High-Speed data is a major competitive advantage.

*Source: KDDI Financial Results of the Fiscal Year ended March 2004, presented on Apr 28,2004

The Effect of High-Speed on Subscriber Growth (Cont'd)

Highlights

- Almost 7 million by March 31, 2004.
- KDDI added 350,000 subscribers within 4 months of launch.

The Effect of High-Speed on Subscriber Growth (Cont'd)

Technology Evolution

Description	CDMA (1xEV-DO Rel-0)	CDMA (1xEV-DO Rel-A)	CDMA (1xEV-DV)	WCDMA (Rel-99)	HSDPA (Rel-5)
Downlink Speed	2.4 Mbps	3.0 Mbps	5 Mbps	2 Mbps	14.4 Mbps
Uplink Speed	300 Kbps	1.8 Mbps	1 Mbps	384 Kbps	384 Kbps
Voice Support	No VolP	VoIP	CS, VoIP	CS, No VoIP	VoIP
Spectrum Used	1.25 MHz	1.25 MHz	1.25 MHz	5MHz	5 MHz

CS: Circuit Switched

The All-IP Architecture

- The traffic on broadband wireless networks is increasingly IP.
- A huge number of companies develop IP software.
- Standardization yields cost effectiveness.
- No single company can or needs to develop all the software needed for a broadband wireless network.
- → The All-IP Architecture.

All-IP Architecture Benefits

IP reduces the cost of the Data Backhaul Network

All-IP Architecture Benefits (Cont'd)

IP Routing Increases Network Reliability/Availability

Dynamically connect to an alternate Radio Network Controller (RNC) if an RNC fails

All-IP Architecture Benefits (Cont'd)

 An All-IP Architecture enables network operators to leverage existing IP-based QoS technologies.

All-IP Architecture Benefits (Cont'd)

 An All-IP Architecture enables network operators to leverage existing IP-Multicast technologies to provide Multimedia Services.

QoS

Technology Summary

- Allow the system to apply different treatment (e.g., retransmission overload control and scheduling) strategies to different flows.
- Control latency during heavy load by prioritizing delay-sensitive traffic over other traffic.
- A single subscriber can simultaneously use different applications with different QoS rating.

Value Proposition

- Enables operators to launch delay-sensitive services such as Push-to-talk (PTT) and Push to Media.
- Enables operators to launch carrier-grade VoIP.
- Subscribers can simultaneously use PTT (or VoIP), access the web, and email.
- Enables operators to offer preferential network performance to customers who pay more (e.g. enterprise laptops over handsets).

QoS Benefits

- Customer Segmentation
 - Deliver different services and network performance to different customer segments.
 - Gain flexibility in creating data pricing plans.

\$50/month: Enterprise Plan
Unlimited data access
No Rate Limit
Priority in scheduler
Priority in overload conditions
Not delay sensitive

\$15/month: Handset Plan
Unlimited data access
Max Rate = 300 kbps
Not delay sensitive
Low priority in scheduler
Low priority in overload conditions

<u>\$20/month: PTT and</u> <u>Multimedia Plan</u> •Unlimited data access •Max Rate = 300 kbps •Support for PTT traffic

QoS Benefits (Cont'd)

- Enables operators to introduce New Applications:
 - Industry-leading Push-to-talk
 - Voice over IP (VoIP):
 - With performance comparable to that of circuit-switched voice
 - With capacity exceeding that of circuit-switched voice.

Emerging Services and Applications

Evolution of Personal Communications

ASWN 2004 Presentation

vana

Outlook: CDMA Applications & Services

Why Push to Talk on 3G Wireless Networks?

Push-to-talk (P2T) is a differentiated service

- Nextel, the only operator to have P2T for over 10 years, leads US Wireless Industry in ARPU and churn.
- P2T is being launched by operators worldwide as a packet data application on 2.5G (1x and GPRS) networks.
- Push-to-talk over 2.5G Packet Data Networks
 - 2.5G networks have limited data capacity insufficient if application takes off.
 - Consumers expect P2T calls to cost less than regular voice calls but 2.5G networks deliver packet data at the expense of voice capacity.
- Push-to-talk over 3G Wireless Networks
 - Offers a high-bandwidth, spectrally efficient, data channel to deliver P2T.
 - Enables operators to offer enhanced P2T services like Push-to-Media that leverage the high-bandwidth and the proliferation of multimedia devices.

Voice over IP (VoIP)

- QoS with Flexible Priority Scheduling
- Fast Physical Layer Retransmission for Reliability with QoS
- Fast Sector Switching for Mobility
- Efficient Multiplexing & Header Compression for high capacity

Why VoIP on Future Wireless Networks?

- Carrier VoIP has very strong momentum on wire-line networks.
 - Enhanced Voice Services.
 - Common services platform across all markets.
 - Lower Operating Expenses.
 - Competition from Cable and Startups.
- Operators want VoIP to work over Wireless
 - Operators with both wired and wireless networks want to offer unified suite of enhanced voice features.
 - Operators with both wired and wireless networks reduce operating expenses.
 - Wireless-only operators need VoIP, if their competitors launch it.

VolP Delivers Feature-Rich Voice

Exemplary features enabled by VoIP

Enhanced Voicemail	Retrieve voicemail as email.Group voicemails and "talking emails".
Call Logs	Online personal call manager.Remembers phone numbers, for organization.
Do not Disturb	No incoming calls.
Locate Me	 Home phone will ring up to five phones in sequence to find subscriber.
Personal Conferencing	 Conference call for up to 9 people (9-way calling).
Speed Dial	Network-assisted speed dial.
Number for Life	Phone number independent of location.

Broadcast Services

Broadcast Services Deployment

ASWN 2004 Presentation

Page 31

Why Broadcast on Future Wireless Networks?

- Multimedia Traffic over High-Speed Networks increases the Average Revenue Per User.
 - <u>SK Telecom:</u> In 2003, Premium Multimedia increased 1xEV-DO ARPU from \$13.9 to \$19.45.
 - <u>KTF</u>: In 2003, Video on Demand (VoD) increased 1xEV-DO ARPU from \$10.50 to \$17.3
- Multimedia brings Differentiation.

But Multimedia Downloads are Bandwidth intensive

In South Korea, Music, TV and Adult Content account for 43% of hits but 78.8% of network usage

ASWN 2004 Presentation

vana

Broadcast Transforms Economics of Multimedia Business Model

- Operators can push <u>multimedia to mass audiences</u> or large groups
 - Makes multimedia-content delivery over wireless links scalable, provides Cable TV-like business model.
- More efficient compared to unicast on-demand access
 - Efficient over the air.
 - Efficient in network nodes.
 - Efficient in backhaul.
 - Efficient in servers.
- → Broadcast increases the profitability of the wireless multimedia delivery business model.
- <u>Instant delivery</u> of event-triggered content (breaking news, sports, emergencies, weather advisories).
- <u>Store and Playback Content</u> models in which time-insensitive content (Soap operas, music videos) is broadcast at off-peak hours.

The Future

- ARPU: 1
- ARPU/Mbyte: \
- Circuit-Switched Voice Traffic:
- IP Traffic: /
- Services and Applications will become All-IP.
- Wireless Networks will become less Air-Interface-Specific and more IP-based.

Thank you!

