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Motivating Scenario




Problem

Wireless clients are diverse, varying in:
o Network Bandwidth

o Network Reliabllity

o Graphical Display

o User requirements

Web services are not flexibly customizable
o Scenario: Wireless E-Commerce
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Previous Approaches

Network-based
o Active Networks

Server-based
o WAP (Wireless Application Protocol)
Intermediary-based

o Web Proxies
o Mobile Agents



Design Goals

The ideal customization solution will be:

0 enough to handle user needs
Q to servers (deployable)
0 to program and understand

o Efficient when used



Solution: ReAgents

ReAgents — Remotely Executing Agents
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Behavior: Filter
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Reduces server data to client specifications
Customizing Logic:

Sample Application: Low-bandwidth filtering




Behavior: Encoder
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Transforms data for reverse-transform at client
Customizing Loqic:
Sample Application: Encrypted transfer for privacy




Behavior: Monitor
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Polls object on server until desired state Is reached,
then reacts to state change

Customizing Logic:
Sample Application: Custom stock trader




Behavior: Cacher
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Bypasses server communication by storing
frequently accessed server data close to client

Customizing Logic:
Sample Application: Resource-poor client caching




Behavior: Collator
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Sends same request to many servers and merges results
Customizing Logic:
Sample Application: Shopping comparison agent




‘ Experiment
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= File transfer time reduced 30-75%
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‘ Experimental Results
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= ReAgent overhead is low
= Overhead scales well as file size increases




‘ Conclusion

= ReAgents customize for wireless clients

Q
o logic
o Transparently
= Server is bypassed
o Easily
= One-shot mobility simplifies security and semantics
= Behaviors provide structured, patterned development

o Efficiently
= Results show good performance and scalable overhead




Questions?







‘ ReAgent Architecture
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Usage

ReAgent created by chaining Behaviors
Behaviors created by instantiating with
Example: Custom Stock Trader

ReAgent reagent = new ReAgent();

Behavior m = new Behavior (“ " ");

Behavior t = new Behavior (* ", null);

reagent.addBehavior (m, null); (no converter for monitor)
reagent.addBehavior (t, “ ");
reagent.launch(” ");

reagent.process(“GET http://stock.org/viewprice.cgi/?p= ");



