
Using Behavior Templates To
Design Remotely Executing
Agents For Wireless Clients

Eugene Hung and Joseph Pasquale
Dept. of Computer Science and Engineering
University of California, San Diego

Motivating Scenario

Problem

n Wireless clients are diverse, varying in:
q Network Bandwidth
q Network Reliability
q Graphical Display
q User requirements

n Web services are not flexibly customizable
q Scenario: Wireless E-Commerce

Outline

n Previous Approaches
n Design Goals
n Solution – ReAgents
n Architecture
n Behavior Library
n Experiments
n Conclusions

Previous Approaches

n Network-based
q Active Networks

n Server-based
q WAP (Wireless Application Protocol)

n Intermediary-based
q Web Proxies
q Mobile Agents

Design Goals

n The ideal customization solution will be:
q Flexible enough to handle user needs
q Transparent to servers (deployable)
q Easy to program and understand
q Efficient when used

Solution: ReAgents

n ReAgents – Remotely Executing Agents
q Contain Customizing Logic (CL)
q “One-shot” mobility to ReAgent host
q Behavior-based development

Behavior: Filter

n Reduces server data to client specifications
n Customizing Logic: Data-reducing algorithm
n Sample Application: Low-bandwidth filtering

Behavior: Encoder

n Transforms data for reverse-transform at client
n Customizing Logic: Reversible data transformation
n Sample Application: Encrypted transfer for privacy

Behavior: Monitor

n Polls object on server until desired state is reached,
then reacts to state change

n Customizing Logic: Object state test and reaction
n Sample Application: Custom stock trader

Behavior: Cacher

n Bypasses server communication by storing
frequently accessed server data close to client

n Customizing Logic: Cache management policy
n Sample Application: Resource-poor client caching

Behavior: Collator

n Sends same request to many servers and merges results
n Customizing Logic: Results-collation algorithm
n Sample Application: Shopping comparison agent

Experiment

n File transfer time reduced 30-75%

Experimental Results

n ReAgent overhead is low
n Overhead scales well as file size increases

0

50000

100000

150000

200000

220 600 1560 3430

File size (kilobytes)

R
es

p
o

n
se

 ti
m

e
(m

s) Total UnCmp

Total Cmp

R->C

R

S->R

Cmp

Conclusion

n ReAgents customize for wireless clients
q Flexibly
n Customizing logic

q Transparently
n Server is bypassed

q Easily
n One-shot mobility simplifies security and semantics
n Behaviors provide structured, patterned development

q Efficiently
n Results show good performance and scalable overhead

Questions?

ReAgent Architecture

Usage

n ReAgent created by chaining Behaviors
n Behaviors created by instantiating with CL
n Example: Custom Stock Trader

ReAgent reagent = new ReAgent();
Behavior m = new Behavior (“Monitor”, “MyPriceWatch.class”);
Behavior t = new Behavior (“Filter”, null);
reagent.addBehavior (m, null); (no converter for monitor)
reagent.addBehavior (t, “GenerateStockBuyRequest.class”);
reagent.launch(“middleman.org”);
reagent.process(“GET http://stock.org/viewprice.cgi/?p=GOGL”);

