Using Behavior Templates To
Design Remotely Executing
Agents For Wireless Clients

Eugene Hung and Joseph Pasquale

Dept. of Computer Science and Engineering
University of California, San Diego

Motivating Scenario

Problem

Wireless clients are diverse, varying in:
o Network Bandwidth

o Network Reliabllity

o Graphical Display

o User requirements

Web services are not flexibly customizable
o Scenario: Wireless E-Commerce

Outline

Previous Approaches
Design Goals
Solution — ReAgents
Architecture
Behavior Library
Experiments
Conclusions

Previous Approaches

Network-based
o Active Networks

Server-based
o WAP (Wireless Application Protocol)
Intermediary-based

o Web Proxies
o Mobile Agents

Design Goals

The ideal customization solution will be:

0 enough to handle user needs
Q to servers (deployable)
0 to program and understand

o Efficient when used

Solution: ReAgents

ReAgents — Remotely Executing Agents

o Contain (CL)
o - " mobility to
0 -based development
Client amch ReAgent Host Web Server

Front-End _}——

] RN
e g -
Protocol

Browser Proxy Middleware

Behavior: Filter

Client

launch

reAgent Host

(%

Browser/Proxy

|

Client

Protocol

reAgent Logic

VA
7 @ Server

Protocol

Server

Reduces server data to client specifications
Customizing Logic:

Sample Application: Low-bandwidth filtering

Behavior: Encoder

Client lamnch reAgent Host Server

A Ta

Decode <t--—--—-—-——-1= 3 e
Client Server

Browser/Proxy Protocol reAgent Logic Protocol

Transforms data for reverse-transform at client
Customizing Loqic:
Sample Application: Encrypted transfer for privacy

Behavior: Monitor

Client launch reAgent Host Server
A
7 RAN
Client o
= >
Q Protocol @ :
Browser/Proxy Core Logic Server Object
(High Latency) (Multiple
Requests)

Polls object on server until desired state Is reached,
then reacts to state change

Customizing Logic:
Sample Application: Custom stock trader

Behavior: Cacher

Client launch reAgent Host Server
A Ta
Client _
Q Protocol """(;g;;};';,;;;;;;;;;;""
Browser/Proxy Core Logic
(High Latency)

Bypasses server communication by storing
frequently accessed server data close to client

Customizing Logic:
Sample Application: Resource-poor client caching

Behavior: Collator

Servers

Client laonch reAgent Host /

|

v AN /

(e -

Protocol N
Browser/Proxy Core Logic \

(Many Different Servers)

Sends same request to many servers and merges results
Customizing Logic:
Sample Application: Shopping comparison agent

‘ Experiment

Client ReAgent Host Server

]

= File transfer time reduced 30-75%

Browser/Proxy

‘ Experimental Results

—~ 200000
150000
100000

50000

Response time (ms

0

/ —e— Total UnCmp

—a— Total Cmp
2 T -

/ // R
—%—S->R
9 + ——Cm
»— T % T ‘ ‘# p
220 600 1560 3430

File size (kilobytes)

= ReAgent overhead is low
= Overhead scales well as file size increases

‘ Conclusion

= ReAgents customize for wireless clients

Q
o logic
o Transparently
= Server is bypassed
o Easily
= One-shot mobility simplifies security and semantics
= Behaviors provide structured, patterned development

o Efficiently
= Results show good performance and scalable overhead

Questions?

‘ ReAgent Architecture

Request

Response

Request

Response

Request

Response

Response

Usage

ReAgent created by chaining Behaviors
Behaviors created by instantiating with
Example: Custom Stock Trader

ReAgent reagent = new ReAgent();

Behavior m = new Behavior (“ " ");

Behavior t = new Behavior (* ", null);

reagent.addBehavior (m, null); (no converter for monitor)
reagent.addBehavior (t, “ ");
reagent.launch(” ");

reagent.process(“GET http://stock.org/viewprice.cgi/?p= ");

