
Resource-Controlled Remote Execution to Enhance
Wireless Network Applications

Travis Newhouse, Joseph Pasquale

{newhouse,pasquale}@cs.ucsd.edu

1

Wireless Applications Can Benefit From Wired
Computational Resources

Goal:

• Enhance wireless applications without requiring additional resources on
mobile device

Benefits:

• Reduce effects of Internet’s “best effort” design
• Transform data “designed for the desktop” to suit mobile device platforms
• Supplement mobile device hardware resources (e.g. processor, memory,

battery life)

Travis Newhouse, UCSD 2

The Extension Model for Remote Execution

Server

Network Service

Wireless
Client

App

Computational
Resource

Extension

Extension is code that implements application-specific functionality
to extend control of an endpoint

Extension is loaded on demand by the remote node

Non-extended endpoint need not be modified

Travis Newhouse, UCSD 3

Java Active Extensions System

A user-level system for remote execution

Supports processor quality of service

User-level implementation supports incremental deployment

System design supports scalability of hardware resources

Travis Newhouse, UCSD 4

Resource-Controlled Remote Execution

Endpoint

Directory Service

object
communicationhandle

extension

1. Locate extension system
Extension System

Resource allocation

Extension

4. Communicate

4. Execute3. Load an extension

2. Request resources

4 phases:
• Discovery – locate an extension system in the network

• Resource allocation – request processor resources for execution

• Deployment – load extension(s)

• Execution – extension runs and communicates with endpoint

Travis Newhouse, UCSD 5

Quality of Service

Resource requests are made in the form: 〈quanta, period〉

Extension systems advertise quantum length

Endpoints specify the period over which resources are guaranteed

Travis Newhouse, UCSD 6

Endpoint-Extension Communication

receive

send

receive

(from endpoint)

Resource Allocation

Extension System

communication
object

outgoing

incoming

Extension

send

Message passing mechanism provided by extension system

Intended for bootstrapping application-specific communication

Messages are arbitrary, application-formatted sequences of bytes

Message delivery follows in-order and at-most-once semantics

Travis Newhouse, UCSD 7

Extension System Architecture

Extension Server

authorize

Extension System

Endpoint

load Extension Server

module
policy

resourceManagerallocate

deallocate

ExtensionExtension

Extension Server provides execution environment
• Hosts the execution of one or more extensions
• Executes extensions with pre-allocated share of processor resources

Manager enforces locally-defined policy for resource sharing
• Responds to endpoints’ resource requests by creating extension servers
• Schedules processor resources among extension servers

Travis Newhouse, UCSD 8

Enforcing Processor Shares

module
policyauthorize

leases

Manager
Extension

Server
Extension

Server

renew

deallocate

allocate

user−level scheduler

Each extension server implemented as a separate JVM

User-level scheduler operates on UNIX-like operating system

Groups of processes scheduled by the user-level scheduler

Kernel makes fine-grained scheduling decisions

Travis Newhouse, UCSD 9

Cost of Basic Operations

Operation Mean (ms)

Discover manager using Jini 770 ± 1

Discover manager using socket 542 ± 1

Allocate extension server 764 ± 4

Load extension 315 ± 3

Mean operation time with a 99% confidence interval over 1000 trials

Test machine is dual 600 MHz Pentium III, 1 GB memory, Solaris 8

Travis Newhouse, UCSD 10

Message Passing Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100000 10000 1000 100 10 1

Ti
m

e
(m

s)

Message size (bytes)

One-way
Round-trip

Web access

1000 trials performed over a local 100 Mbps Ethernet

Sending a message is comparable to a retrieving a local Web object

Travis Newhouse, UCSD 11

Overhead and Accuracy of User-Level Scheduler

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

O
ve

rh
ea

d
(%

)

Number of Processes

10 ms
20 ms
50 ms

 5
 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30

S
ha

re
 (%

)

Time (seconds)

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4

 0 5 10 15 20 25 30

R
el

at
iv

e
E

rr
or

 (%
)

Time (seconds)

Travis Newhouse, UCSD 12

Conclusions

The extension model for remote execution can enhance wireless
network applications

Java Active Extensions system provides remote execution with
processor quality of service

The system architecture supports scalable hardware resources

The user-level implementation supports ease of deployment and
abstracts hardware details

Travis Newhouse, UCSD 13

