A Lightweight Statistical Authentication Protocol for Access Control in Wireless LANs

Haoli Wang, Joel Cardo, Yong Guan

ECE, Iowa State University

ASWN 2004

Introduction

Emergence of visitor networks

- Visitor Networks:
 - LANs that are most often deployed in *public* places and enable the public network access on an ad-hoc basis.
 - ISPs desires *user authentication* before granting the right to access Internet and then *charges* users accordingly.

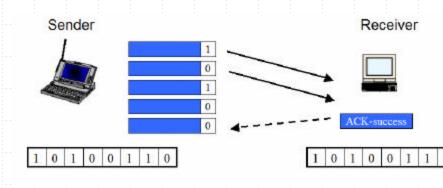
Traditional authentication protocols for wired networks do not work well in wireless

- error-prone wireless transmission medium, node mobility, power conservation constraints
- Current wireless authentication protocol, such as WEP, has some security flaws.
- Dilemma in wireless security
 - Vulnerable wireless networks need strong security protocols, resulting in enormous power consumption.

Shepherd Overview

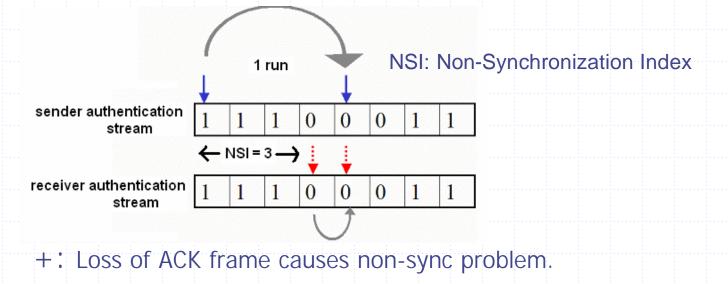
Design goals

- Secure: An attacker should be able to gain the access to the network only with a very low probability.
- **Robust**: The protocol must effectively resist the attacks and the unexpected situations.
- Efficient: The protocol must be efficient in term of overhead, bandwidth and CPU cycles.
- Detectable: If the attacker tries to gain the access to the network, the protocol will be able to detect it.


Characteristics

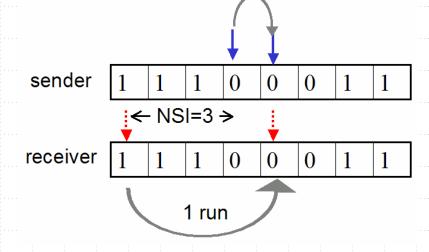
- Lightweight: good for power conservation
- Probabilistic method: good for node mobility and error-prone channel

Shepherd


How Shepherd works

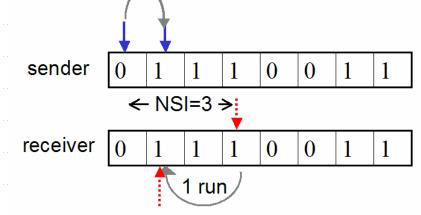
- AP and MN generate authentication bit streams by the same random number generator under the same shared seed as a key.
- Authentication bit is piggybacked in exchanged frame from MN to AP.
- AP determines the legitimacy of MN by continuously checking a series of randomly generated authentication bits.
- Unsynchronization Problem
 - Frame loss may cause UnSync problem between AP and MN.
 - UnSync problem leads to check error at AP.

Sync Scheme 1


- Receiver's pointer always moves forward one step after replying DATA frame.
- Sender's pointer moves after receiving ACK(+/-)
 - ACK+: move forward one step
 - ACK- : move forward to "opposite bit" + 1

- : Sender is aware of the checking results.

Sync Scheme 2


- Sender's pointer always moves forward one step after sending DATA
- Receiver's pointer moves after replying DATA frame.
 - If checking bit correct, move forward one step
 - If checking bit uncorrected, move forward to "opposite bit" + 1

- +: Sender is *unaware* of the checking results.
- -: Loss of DATA frame causes non-sync problem.

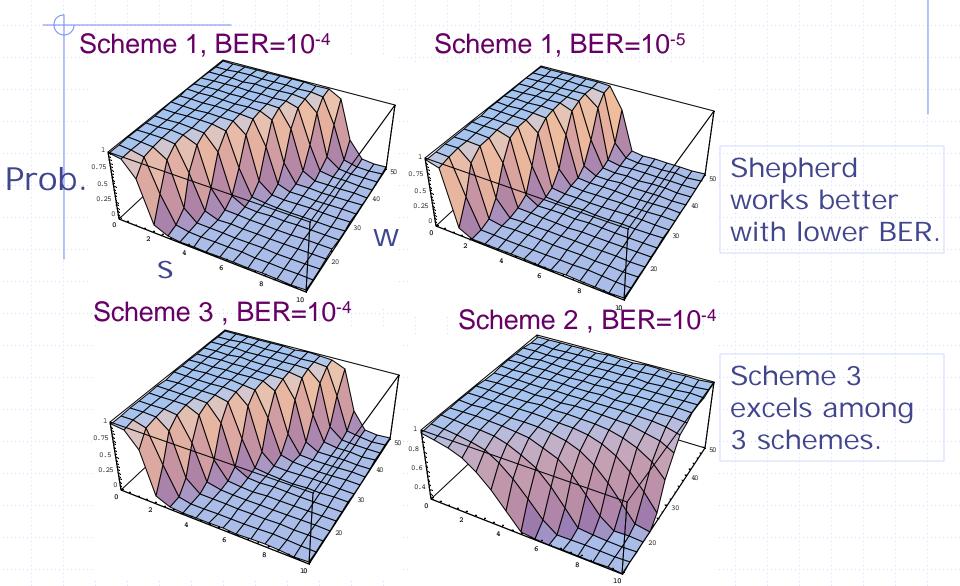
Sync Scheme 3

- Sender's pointer always moves forward one step after sending DATA
- Receiver's pointer moves after replying DATA frame.
 - If checking bit correct, move forward one step
 - If checking bit uncorrected, move back to "opposite bit" + 1

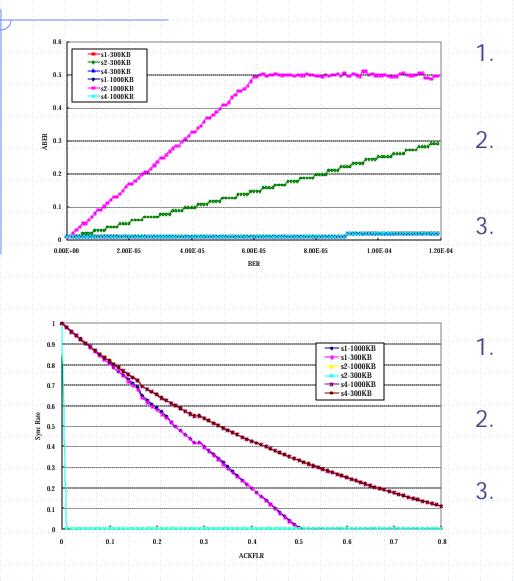
- +: Loss of ACK frame causes non-sync problem.
 - Sender is unaware of the checking results.
- -: Some bits may be reused.

Statistical Method

In scheme 1, The probability of this mobile station H being a legitimate one can be derived by


$$Pr(H = legal|w, s) = \frac{\delta^{s}(1-\delta)^{w-s}}{2^{-w} + \delta^{s}(1-\delta)^{w-s}}$$
(1)

where δ is the average authentication bit error rate and calculated as


$$\delta = \sum_{i=1}^{G} \left[(L_{ACK} \times BER)^i \times \frac{i+1}{2} \right]$$
(2)

s: number of syncs w: number of checks G: Max number of consecutive frame losses L_{ACK}: ACK frame length

Numerical Analysis Results

Simulation Results

 For a legal node, authentication bit error rate increases with increasing BER.
 A good scheme is ship to

- A good scheme is able to increase slowly with increasing BER.
- Scheme 2 increases quickly. Scheme 3 increase slower than scheme 1.
- For a legal node, Sync rate drops with increasing FLR.
- A good scheme is able to drop slowly with with increasing FLR.
- Scheme 2 drops quickly. Scheme 3 drops slower than scheme 1.

Comparison

	Shepherd	SOLA	RBWA				
Random bit	V	V	V				
UnSync Problem	V	V					
Algorithm Workable	V						

RBWA uses the sequence number in each IP packet to avoid sync problem, but we argue that SN is not reliable.
A problem exists in the sync algorithm in SOLA.

Summary

A lightweight probabilistic authentication protocol is proposed for wireless networks.

Three synchronization schemes for UnSync Problem.

Implementation Consideration

4

Type and subtype fields are adapted from IEEE 802.11.

B0 B1	B2 B3	B4	B 7	B 8	B9	B10	B11	B12	B13	B14	B15
Protocol Version	Туре	Subtype		To DS	From DS	More Frag	Retry	Pwr Mgt	More Data	WEP	Order

Frame Control Field

- H. Wang, A. Velayutham and Y. Guan, A Lightwight Authentication Protocol for Acess Control in IEEE 802.11, IEEE GLOBECOM, 2003
- H. Wang, J. Cardo and Y. Guan, Shepherd: A Lightweight Probablistical Authentication Protocol for Wireless Networks, in submssion.

Thank You