Liveliness Evaluation of a Cooperation and Accounting Strategy in Hybrid Networks

Attila Weyland, Thomas Staub and Torsten Braun

ASWN 2004, Boston
August 9, 2004

University of Bern
Institute of Computer Science and Applied Mathematics
Computer Networks and Distributed Systems Research Group (RVS)
Table of Contents

• Introduction
• Motivation
• Concept
• Architecture
• Operation
• Simulation Scenario & Parameters
• Results
• Summary & Outlook
Introduction

• Multi-hop Cellular Networks
 – Combine dynamics of mobile ad hoc networks and reliability of infrastructured wireless networks
 – Compared to single-hop
 • Increased coverage area
 • Dynamic adaptation of network topology
Motivation

• New context to deal with weaknesses of mobile ad hoc networks such as
 – Routing
 – Security
 – Cooperation

• Stimulate cooperation without threat of punishment

• Make cooperation a rewarding alternative to selfishness
CASHnet Concept

- Every time a node wants to transmit a self-generated packet, it has to pay with *Traffic Credits* (TC)
- Every time a node forwards a packet, it gets *Helper Credits* (HC)
- Traffic Credits can be bought for real money or traded for Helper Credits at service stations
Architecture

• Assumptions
 – Tamper resistant device which allows safe execution of CASHnet functions and maintains two accounts
 – Distance (in hop counts) to gateway provided by routing protocol
 – Sufficient processing power on the node
• Security mechanisms are based on public key cryptography
 – Nodes authenticate themselves using certificates with short life time issued by the provider
 – Transmitted messages are digitally signed ensuring non-repudiation (data integrity and data origin authentication)
Operation

Smart Card

Operation Gateway Provider's Backbone Gateway Provider's Backbone

-4 TC +1 HC +1 HC +1 HC +1 HC -3 TC

Gateway

Service Station

Provider's Backbone

-20 HC -10 RM +20 TC

Gateway

+1 HC +1 HC -3 TC
Simulation Scenarios

Parameter	Value
Initial Traffic Credits account state | 100 TC
Initial Real Money account state | 500
Traffic Helper Credits exchange rate | 1:1
Exchange threshold at Service Stations | 10 HC
Distance threshold to Service Stations | 50 m
Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1500 m x 800 m</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>40</td>
</tr>
<tr>
<td>Transmission range</td>
<td>250 m</td>
</tr>
<tr>
<td>Mobility model</td>
<td>random waypoint</td>
</tr>
<tr>
<td>Speed</td>
<td>u. d. between 1 and 10 m/s</td>
</tr>
<tr>
<td>Pause time</td>
<td>u. d. between 0 and 20 s</td>
</tr>
<tr>
<td>Packet generation rate</td>
<td>1, 0.2, 0.1 pkt/s</td>
</tr>
<tr>
<td>Number of Service Stations</td>
<td>1, 2, 9, 12</td>
</tr>
<tr>
<td>Simulation time</td>
<td>900 s</td>
</tr>
</tbody>
</table>
Starvation Periods

- Starvation: a node is unable to transmit self-generated packets because of missing TCs

CASHnet, 5 s packet interval, 2 service stations, run 0

CASHnet, 5 s packet interval, 12 service stations, run 0
Starvation Events/Duration Category

CASHnet, 1 s packet interval, 1 service station

1 s packet interval
1 service station

CASHnet, 1 s packet interval, 12 service stations

1 s packet interval
12 service stations

CASHnet, 10 s packet interval, 1 service station

10 s packet interval
1 service station

CASHnet, 10 s packet interval, 12 service stations

10 s packet interval
12 service stations
Results

- Duration and frequency of starvation events correlates with
 - Number of Service Stations
 - Location of Service Stations
- Simulation results affected by mobility model
 - Random waypoint movement paths behave centric (2 service stations worse than 1 centered)
- Per packet charging lets nodes run out of Traffic Credits/Real Money quickly
Summary & Outlook

- Highly decentralized accounting and security architecture
- Selfish nodes are allowed, but cooperation is encouraged via rewards
- Cost sharing between sender & receiver
- Evaluation of starvation property through simulations
 - Compare with other cooperation schemes
 - Use different mobility models, e.g. restricted random waypoint
 - Study effects of possible extensions (e.g. charging for ad hoc only traffic, deposit payment for receiving traffic, increasing granularity)
- Specify charging/remuneration relation
Implementation

- ns-2 [Vint Project], Wireless and Mobility extensions [Rice] and AODV+ [Hamidian]
- Class CashnetNode inherits from MobileNode
- Agent at ns2 src/sink does rewarding
- Class CMUTrace extended for CASHnet events