
1 Pascal URIEN, Boston University, August 9th 2004.

EAP-TLS Smartcards, from Dream to Reality

Pascal Urien, Mohamed Badra, Mesmin Dandjinou

4th Workshop on Applications and Services in Wireless Networks
Boston University

Massachusetts, USA
August 9th, 2004

2 Pascal URIEN, Boston University, August 9th 2004.

Wi-Fi Security Model

User is authenticated according to the IEEE 802.1X model, based on
the Extensible Authentication Protocol (EAP, RFC 2284bis)
Authentication is performed between the supplicant (user’s PC) and
the (RADIUS) authentication server.

The link between the users’ database (LDAP, GSM HLR;..) and the
RADIUS server is not specified.

At the end of this process, a Master Session Key (MSK) is computed
by the supplicant and the authenticator
As specified in 802.1X-REV-d8, MSK is a couple of two 32 bytes key
named MS-MPPE-Send-Key and MS-MPPE-Recv-Key. These keys are
securely sent (by the RADIUS server) to the access point as
described in RFC 2548 (Microsoft Vendor-specific RADIUS attributes).
A key exchange protocol (IEEE 802.1X, IEEE 802.11i) is used in order
share a session key SK (for example a WEP key or a PTK key)
between the Access Point an the Supplicant.
According to the radio security protocol used between the Access
Point and the Supplicant (WEP, TKIP, CCMP) various key are
deduced from SK in in order to realize,

802 Frames privacy (data encryption)
802 Frames integrity
802 Frames authentication (data encryption + data integrity ó
symmetric signature).

3 Pascal URIEN, Boston University, August 9th 2004.

Wi-Fi Security Model (suite)

Access-Accept/EAP+MSKEAP-Success

Master
Session Key

MSK

EAPoL-Key/ANonce

EAPoL-Key/SNonce

EAPoL-Key/Install

EAPoL-Key

RADIO security protocol
WEP-TKIP–CCMP

EAP-Request/Identity

EAP-Response/Identity

Access-Challenge/EAP

Access-Request/EAP

EAP-Request/Type

EAP-Response/Type

Access-Request/EAP

WEP Key

EAPoL-Key (WEP-Key)

802.11i Key
Exchange Protocol

802.1X Key Exchange
Protocol

LDAP/ODBC/MAPEAP over RADIUSEAP over 802 LANsEAP over 7816

SupplicantSmartcard Authenticator
Access Point

Authentication
Server

Users’
Database

EAP

MSK

SK (PTK)
Derivation

WEP Key

AAA
Link

PC/SC

SK (PTK)
Derivation

PTK Key

WEP Key

4 Pascal URIEN, Boston University, August 9th 2004.

THE EAP smartcard
What is the EAP smartcard ?

A smartcard that processes EAP messages
It supports multiple authentication methods

EAP-SIM, EAP-TLS, EAP-MSCHAPv2, others
First EAP-TLS smartcard is operational since June 17th 2004.

What doest it look like ?
It is an application written for Javacards.

Specified by an IETF draft
“EAP-Support in smartcard”

draft-urien-eap-smartcard-05.txt
The EAP smartcard won two awards

Sesame 2003, “Best Technological Innovation”, cartes’2003 exhibition, Paris,
November 2003
Card Technology Magazine, Breakthrough Awards 2004, “Innovation”,
CardTech/SecureTech exhibition, Washington DC, April 2004.

Are smartcards performances sufficient ?
Usually smart cards include crypto-processors that compute the RSA 2048 bits
algorithm in less than 0,5s.
Commercial Javacards memory size are around 32-64 Kb (available for code byte
storage).

The size of an X509 certificate is about 1kb
As an illustration EAP-TLS applet size (processing EAP and TLS protocols) is around 20Kb.

New generation of smartcards based on FLASH technology, supports one megabyte
of memory.

5 Pascal URIEN, Boston University, August 9th 2004.

EAP-TLS Cryptographic costs for RC4-MD5 crypto suite

N = PRF, i= N/16, j=N/20
PRF(2i+1 x HMAC-MD5, 2j+1 x HMAC-SHA-1)
HMAC-MD5 = 2 x MD5 (5 x blocks)
HMAC-SHA1 = 2 x SHA1 (5 x blocks)

Server Hello Message Processing
Cost: 3xRSA, 500 x MD5-blocks, 500 x SHA1-blocks, 1xRC4

3 x RSA
3 x PRF = 20 x HMAC-MD5 (10 blocks)
3 x PRF = 20 x HMAC-SHA1 (10 blocks)
3 x MD5 (100 blocks)
3 x SHA-1 (100 blocks)
1 x RC4 (32 bytes)

Server Finished Message Processing
Cost: 130 x MD5-blocs, 130 x HMAC-blocs, 1 x RC4

2 x PRF = 13 x HMAC-MD5 (10 blocks)
2 x PRF = 13 x HMAC-SHA1 (10 blocks)
1 x RC4 (32 bytes)

Device A </block> = 23,5 ms
Server Hello Processing > 1000 * 23,5 = 23,5s

Device B </block> = 11ms
Server Hello Processing > 1000 * 11,0 = 11,0s

6 Pascal URIEN, Boston University, August 9th 2004.

EAP Smartcard Services

The operating system interface.
Identity is a pointer to an authentication triplet (EAP-ID, EAP-Type,
Credentials) stored in the EAP-Smartcard.
Smartcard may manage several network accounts, the OS performs
an identity discovery process in order to browse its content.
A profile is a collection of information, such as EAP-ID, EAP-Type,
protocol version, list of preferred SSIDs, root certificates, user’s
certificates, or every data meaningful for operating systems in order to
interoperate with the card or to select the right access point when
multiple wireless networks are available.

The network interface.
EAP messages are processed by the smartcard. At the end of the
authentication method, a Session Key (PMK) is computed.

The user/issuer interface.
The smartcard is protected by two PIN codes (Personal Identification
Number), one is managed by the card bearer and the other by the card
issuer. For example if the user’s PIN is activated, the smartcard is
locked (and can’t be used) after three wrong PIN values presentation.

The management/personalisation interface.
This service updates information (identities) stored in the smartcard.

7 Pascal URIEN, Boston University, August 9th 2004.

Integrating EAPSC in Operating Systems
EAP implementation conceptually consists of the three following components

Lower layer. The lower layer is responsible for transmitting and receiving EAP
frames between the peer and authenticator
EAP multiplexing layer. The EAP layer receives and transmits EAP packets
via the lower layer, implements duplicate detection and retransmission and
delivers and receives EAP messages to and from EAP methods.
EAP method. EAP methods implement the authentication algorithms and
receive and transmit EAP messages via the EAP layer. Since fragmentation
support is not provided by EAP itself, this is the responsibility of EAP
methods.

An EAP smartcard implements an EAP method and works in cooperation with a
smartcard interface entity, which sends and receives EAP messages to/from this
component. The simplest form of this interface is a software bridge that
transparently forwards EAP messages to smartcard. According to EAP methods
complexity and smartcard computing capacities, protocol sub-sets, which do not
deal with security features may be computed by the smartcard interface entity.

EAP Multiplexing Layer

Lower Layer

Smartcard
Interface
Type=X

EAP
Method
Type=Y

EAP
Smartcard

EAP Multiplexing Layer

Lower Layer

EAP
Method
Type=X

EAP
Method
Type=Y

Authentication Server Supplicant

8 Pascal URIEN, Boston University, August 9th 2004.

Double Segmentation
According to a TLS record may be up to 16384 bytes in length, a TLS
message may span multiple TLS records, and a TLS certificate message
may in principle be as long as 16MB. Furthermore the group of EAP-TLS
messages sent in a single round may thus be larger than the maximum
LAN frame size. Therefore EAP-TLS [6] introduces a segmentation
process that splits TLS messages in smaller blocs, acknowledged by
the recipient.
The RADIUS server generates acknowledgement requests and the
supplicant acknowledgment responses.
A double segmentation mechanism is necessary in order to forward
TLS packets to smartcard. These messages are divided in smaller
segments, whose size is typically 1400 bytes, and than encapsulated in
EAP-TLS packets.

Recv: TLS
Message#1

EAP-TLS
fragment #1
(1400 bytes)

EAP-TLS
fragment #1

240 bytes

EAP-TLS
ack#1

Send: TLS
Message#1

EAP-TLS
fragment #2

EAP-TLS
fragment #2

Authentication
Server

Supplicant
Smartcard Interface

EAP-TLS
Smartcard

Send: TLS
Message#2

EAP-TLS TLS

EAP-TLS
ack#1

Recv: TLS
Message#2

APDU
fragment#1
(240 bytes)

ack#1

APDU
fragment#1

ack#1 APDU
fragment#n

ack#1

EAP-TLS TLS

APDU
fragment#n

ack#1

9 Pascal URIEN, Boston University, August 9th 2004.

EAP-TLS Javacards
JavaCard 2.x platform natively provides essential cryptographic services that are required by
the TLS protocols; in particular:

Random number generation.
MD5 and SHA1 digest functions.
RSA public key encryption and decryption.
RSA private key encryption and decryption.
DES or 3DES ciphering.

However some additional facilities that are not currently available in JC platforms are provided
by the EAP-TLS application. For example:

Keyed-hashing procedures (HMAC-MD5 and HMAC-SHA1).
The pseudo random function (PRF) defined by the TLS protocol.
The RC4 algorithm, which is often used by the TLS record layer.
An X509 certificate parser required for signature analysis and public key extraction.

Total code size, #22KB (8 KB of data)

IETF eap-smartcard
APDU-Fragmentation

Smartcard Interface

Supplicant EAP Method Layer

EAP-TLS
EAP-TLS Fragmentation

TLS

Certificates
Management

TLSUtil.class

Client CA

PUB
PRIV

EAP.class

Record Layer

Handshake Protocol

Cryptographic
library

Security
Management

IO
Management

Smartcard
OS

JAVA Virtual Machine

Java Card Run time
Environment

JCRE

JC2.2
Framework

MD5 SHA1 RSA

EAP-TLS
Java

Application

HMAC-MD5(key,msg)

HMAC-SHA1(key,msg)
PRF(key,seed,msg)

HMAC-MD5

X509 Certificate
Parser

ISO 7816
APDUs

RC4(key,msg)

RNG

10 Pascal URIEN, Boston University, August 9th 2004.

Performances Issue

What performance is needed ?
IEEE 802.1x, 2001, 8.5.4.1.2

“txPeriod. The initialization value used for the txWhen timer. Its
default value is 30 s; it can be set by management to any value
in the range from 1 to 65535 s.”

Target.
Computing each sub-part of the EAP-TLS protocol in less
than 30 seconds !

EAP-Request

EAP-Response

11 Pascal URIEN, Boston University, August 9th 2004.

Tamper-Resistant Microcontrollers

RAM

E2PROM

ROM

CPU

5 mm

no4032 bits1000 kbit/s8 MHz349640968 bitsB

yes1088 bits424 kbit/s10 MHz329623048 bitsA

RNGRSA
Processor

Max Data RateMax. ClockE2PROM
Kbytes

ROM
Kbytes

RAM
bytes

CPUDevice

12 Pascal URIEN, Boston University, August 9th 2004.

RSA computing time

RSA Computing Times

0

100

200

300

400

500

600

700

PrivEncrypt_1024 PubDecrypt_1024 PubEncrypt_1024 PrivDecrypt_1024 CAPubEncrypt_2048

T
im

e
(m

S
)

A
B

13 Pascal URIEN, Boston University, August 9th 2004.

MD5 & SHA1 computing time

0

1000

2000

3000

4000

0 2000 4000 6000 8000

input length (bytes)

tim
e

(s
ec

o
n

d
)

A-MD5
A-SHA1
B-MD5
B-SHA1

A: 23,5ms/block
B: 11,0ms/block

MD5 & SHA-1 Performances
From “SSL and TLS”chapter 1,p32
OPENSSL FreeBSD Pentium II 400
MD5…. 65 MB/s
SHA1…31 MB/s

14 Pascal URIEN, Boston University, August 9th 2004.

Version 1 performances

a:S
erv

erH
ello

 Tr
an

sfe
r

b:S
erv

er
Cert

 Che
cki

ng

c:R
SA

(pr
e-m

as
ter

-se
cre

t)

d:S
HA1

+M
D5(v

erif
y)

e:R
SA

(ve
rify

)

f:P
RF(m

as
ter

_s
ec

ret
)

g:P
RF(k

ey
_b

loc
k)

h:M
D5+

SH
A1

+P
RF(c

lien
t_fi

nis
he

d)

i:M
D5+

SH
A1

(se
rve

r_f
inis

he
d)

j:M
AC

_R
ec

ord

k:R
C4.in

it

l:R
C4.e

nc
ryp

tion

m:Res
po

ns
e_

Tra
ns

fer

a:R
C4.in

it+R
C4.d

ec
ryp

tion

b:C
he

ck_
MAC

_R
ec

ord

c:P
RF(f

inis
he

d)

d:P
RF(P

MK)

e:E
AP

-TL
S-A

CK

B

0

10000

20000

30000

40000

T
im

e
(m

S
)

EAP-TLS Processing Time

B
A

166s – 97s 100s – 54s
Server Hello Processing Server Finished

15 Pascal URIEN, Boston University, August 9th 2004.

Version 1 performances

16 Pascal URIEN, Boston University, August 9th 2004.

Version 2 optimization

Server Hello Message Transfer to SC…….. 10,0s
Server Hello Message Processing................24,0s
SC Response Transfer……………………..….2,5s
Server Finished Message Processing ….…8,5s

Total…………………………………...............45,0s

17 Pascal URIEN, Boston University, August 9th 2004.

Version 2 optimization

97s – 26,5s

54s – 8,5s

18 Pascal URIEN, Boston University, August 9th 2004.

Real performances with 1024 RSA keys

EAP-TLS-Start / Client-Hello…….…………………...1,5s
Server- Hello 1st frag / EAP-TLS-ACK…………….….2,0s
Server Hello 2nd frag / Client Response 1st frag…. .26,0s
Server EAP-ACK / Client Response 2nd Frag…..…..1,0s
Server Finished / EAP-TLS-ACK..……………….…..7,0s

19 Pascal URIEN, Boston University, August 9th 2004.

Conclusion

