Challenges in Modeling and Analysis

Alhussein Abouzeid Assistant Professor Rensselaer Polytechnic Institute http://www.rpi.edu/~abouza

Sensor/Ad Hoc Networks Research

Two key themes:

- 1. Discover the **design principles** for building efficient and adaptive wireless multi-hop data collection and aggregation networks that could scale to infinitely large number of nodes while remaining secure, flexible and fault tolerant.
- 2. Investigate the theoretical **limits** on how large (space) and for how long (time) can sensor networks grow while maintaining an acceptable performance.

Tools Used

- probability theory
- queuing theory
- graph and network flow theory
- optimization theory
- analysis of algorithms
- information theory
- control theory

- simulation
- measurement
- heuristic design procedures

Understanding Networks

Scaling Laws

transport capacity
bounds on performance/

Modeling & Design

 algorithm choice performance rameter setting

Simulation & Experimentation

Real life performance
Cross-layer interactions
Reality check?

ASWN04 Panel on Advances in Wireless Networks

What are the limits? Fundamental/Abstract/Across the board problems/questions...

Scaling laws – capacity, connectivity..etc.

Modeling Problems

- Design and Performance Evaluation of particular algorithms/schemes:
 - Data aggregation/routing
 - Joint data compression/transmission design
 - Target tracking
 - Topology/power control

 If you add 'mobility' and `communication scheme' (many to one vs. one to many)

Modeling vs. Simulation/experimentation

Why invest in "Test-beds"?

 Any implementation is usually so complex and specific that it is not possible to extract meaningful dependencies!

Why do modeling?

 Any model is an imprecise, and probably distorted view of reality!

→Need both approaches

Remaining Challenges

- Resource-Quality (rather than quality-quality) trade-offs
- Scaling laws of routing
- Mobility ("mobility increases capacity")
- Effect of traffic pattern
- Faithful modeling of wireless multiple access medium (what is a "link" in wireless?)
- Cross-layer models; MAC, routing, queuing & application
- Sensor networks: data transportation \rightarrow distributed sensing and actuation
- Sensor applications
 - **b**ps \rightarrow Mbps (just like the early transition of the Internet to a Multimedia experience)
 - Prototypes: \underline{m} otes $\rightarrow \underline{M}$ otes

In a nutshell

 \leftrightarrow

Realistic models that extract pervasive dependencies