Quality of Service for Ad Hoc and Sensor Networks

Wendi Heinzelman
University of Rochester
What is QoS?

- Ability to provide “better than best effort” service
- Performance parameters
 - Ad hoc networks: multimedia communication
 - Latency
 - Jitter
 - Packet delivery ratio
 - Sensor networks: data gathering
 - Signal-to-noise ratio
 - Coverage
 - Missed detection / false alarm probabilities
Why is QoS hard for ad hoc and sensor networks?

- Resource limitations
 - Bandwidth
 - Node energy
- Contention for bandwidth
- No centralized control/infrastructure
- Time-varying links
- Enormous amounts of data

→ Need to involve all levels of protocol stack
Cross-layer Architectures

- Tailor protocol stack to take into account QoS requirements of application
- Two architectures
 - Expose information across protocol boundaries
 - Integrate protocols
Challenges

- Appropriate QoS model
 - Per-flow vs. aggregate flows
 - Granularity of QoS support
- How much integration of layers?
- General vs. application-specific
 - How much to tailor protocols to particular application space?
 - Trade-off generality for functionality
- Support for heterogeneous nodes and applications
Challenges (cont.)

- Protocols for resource-impoverished nodes
- Providing assurances despite link failures
 - Node mobility
 - Channel fading
 - Contention
- Integration with other networks
 - Cellular
 - IP
 - WLAN
Example: Video Teleconferencing

QoS architecture

Non-QoS architecture
Example: Sensor Coverage

- Trade-off in QoS and energy efficiency
- Operate at required QoS
 - Allow sensors to sleep
 - Maximize network lifetime