Design and Evaluation of Scalable Ubiquitous Discovery System

Tomohiro NAKAGAWA Takashi YOSHIKAWA Ken OHTA Hiroshi INAMURA Shoji KURAKAKE

NTT DoCoMo, Inc., Japan

2004/8/10

ASWN2004

Outline

- Background, Goal, Scenario
 - Sensor data gathering from flood of sources in the Internet
- Approach
 - P2P network by handsets
- Problems caused by unstable wireless link
- Proposed method
 - An extension of multi-route function to an existing protocol
- Evaluation
- Conclusion

Background: Data gathering via sensor networks

- Various sensor data of objects are gathered in real time locally
 - Communication: Power saving wireless ad hoc networks
 - Types of sensors: Location, temperature, and accelerated velocity
- Mobile phones can be an entrance to sensor network
 - Handsets are connected to the Internet via gateways
 - Required information can be accessed anytime, anywhere

Good grounding of attractive sensor network applications is provided

Goal: Real time data gathering from flood of sources

- Applications
 - Object tracing: path or present location of objects are monitored
 - Status monitoring: temperature or impact shock are monitored
- Latest information should be instantly replied to user requests

Required information are searched over vast & distributed sources

My Cat

2004.5.

2004.7.

Momo ('Peach' in Japanese)

Toddling Kitty — Running from wall to wall

How can I find her if she get out of house ?

Scenario: Tracking of momo using SUDS

- A pet collar is tracked from mobile phone
 - 1. Various location sensor systems are monitoring location of the collar
 - 2. A user know the ID of the collar beforehand
 - 3. In case the pet is lost, the user sends a query of the ID
 - 4. The system replies the path and present location instantly

Approach: Handsets become Distributed servers

- How to gather sensor data ?
 - Sensor data is generally stored in gateway servers
 - Handsets in SUDS store pointers to gateway servers
- Features
 - No additional server is required other than gateways
 - Handsets works as alternatives of servers

Communication Model

- Model
 - Information is searched via multiple handsets
- Assumption
 - Flat-rate system: No additional charge to relay handsets
 - Incentive are given for battery consumption of relay handsets

Problem: Disconnection of wireless communication

- Previous P2P protocols are designed for servers on wired networks
 - Temporal disconnection of wireless network cause interruption of query transmission
 - More relay handsets, worse responsiveness

Interruption of query transmission caused by wireless link must be avoided

Previous Work of P2P Protocols

- In case wireless link is temporally disconnected..
 - Responsiveness gets worse because relay is interrupted
 - It doesn't work to separate the disconnected peer
 - > Frequency of routing table update increases
 - > Time lag exists to notice the disconnection

Requirements

- It is required to eliminate the tradeoff between the following 2 points
 - Provide high responsiveness in the face of temporal disconnectin
 - Decrease traffic of routing table update caused by peer separation

How can we achieve high responsiveness without peer

Proposal: Multi-route Transfer Method

- Basic policy
 - An extension to Chord protocol which provides high scaliability
 - > Chord provides smaller value of path length than CAN
 - > Chord provides more flexible routing than Pastry & Tapestry
- Proposed function
 - Provide multiple routes from a user handset to a target handset

Protocol Feature	CAN	Pastry, Tapestry	Chord	SUDS
Path length	O(dN ^{1/d})	O(log(N))	O(log(N))	Based on Chord
Flexibility of routing		\times	?	
Remarks			Lacks responsiveness	Achieve high resposiveness by using multi-route

Multi-route transfer method is added as an extension to Chord protocol

P2P protocol with multi-route function

- Multiple peers create a group
 - Multiple routes are constructed between 2 groups
 - Even if part of peers are disconnected, responsiveness is guaranteed by alternative path
 - Disconnected peers are not separated from the P2P network and continues to hold a routing table

Responsiveness is provided without separation of disconnected peer

Behaviour of A Peer

ASWN2004

Evaluation

- Protocol Comparison
 - Chord
 - Proposed Multi-route P2P Routing
- Evaluation Item
 - Responsiveness
 - Communication traffic of routing queries

Can we get good responsiveness by using the proposed method ? How much additional traffic is generated by redundant routes ?

Evaluation System

- Chord and the proposed protocol are implemented to 16 servers
- Neighboring 2 servers create a single group
- Brief fluctuation of wireless network is emulated by stopping threads
 - Stop threads for Tstop = 5 [s]
 - The probability of thread stop is Pstop = 0.50 or 0.10

Improvement of Responsiveness

- Responsiveness is greatly improved by the proposed method
 - In Chord protocol, 20.2 [%] of the response were longer than 1 [s]
 - In the proposed protocol, the same value was only 2.1 [%]

Increase of Control Packets

- Number of control packets increased threefold in the proposed method
 - It's acceptable because queries are not so large (several tens of bytes)
- Load sharing among groups is a future work

Increased communication traffic is acceptable

ASWN2004

Reduction of hop count

- Hop count is slightly improved
- Side benefit caused by the decrease of entities
 - The number of entities in P2P network is decreased from the number of independent peers to that of groups

Number of hops is decreased in the proposed method

Conclusion

- We proposed a multi-route P2P protocol for wireless network
 - High responsiveness under temporal network disconnection
 - Avoidance of inefficient traffic of routing table update
- Future Work
 - Load sharing among groups

Thank you for your attention !