

"On Improving Delivery Ratios for Application-Layer Multicast in Mobile Ad-hoc Networks"

Dipl.-Inform. Peter Baumung Institute of Telematics University of Karlsruhe, Germany

- 1. Overview
- 2. Application Example
- 3. Multicast Mechanisms
- 4. NICE-MAN
- 5. Simulation Results
- 6. Summary and Future Work

2. Application Example

Campus-Wide Wireless Multicast-Services

Potential applications:

- Whiteboard / Audio streaming
- Distribution of learning materials
- Cooperation via chat

Impact of MANETs on services:

- Node mobility
- Shared medium
- Frequent packet losses
- Highly sensitive to network load

2. Application Example

Campus-Wide Wireless Multicast-Services

Requirements:

- Support mobile groups
- No fixed infrastructure
- Low latencies
- High delivery ratios

Use application-layer approach:

- Only group members involved
- Reuse protocols from Internet

"Cross-layer" mechanism:

- 1. Local Broadcast Clusters (LBCs)
 - New to application-layer multicast

"Classic" mechanism:

- 2. Retransmission requests
- 3. Buffer management
- 4. Congestion Control

Cross-Layer Information

Problem: Data forwarding through overlays can be *highly inefficient!*

Why...?

TELEMATICS

- Redundant forwarding of data
- Simultaneous medium accesses
- Quickly overburdened medium!

Frequent collisions + IEEE 802.11

- = Exponentially increased back-off time + Retransmission
- = Growing MAC-Queue length
- = Increased latencies!

Cross-Layer Information

Solution: Use broadcast capability!

Overlay nodes...

- Broadcast heartbeats
- Broadcast multicast data
- Local Broadcast Cluster (LBC)

Nearby group members...

- Detect overlay nodes via heartbeats
- Receive/send data via overlay nodes
- Locally joined nodes

Locally joined nodes...

- Do *not* join the overlay
- Do *not* introduce any control flow
- Are unknown to overlay nodes

Local Broadcast Clusters...

- Reduce overlay maintenance cost
 - Very few nodes join overlay
- Forward data with one medium access

Control flow grows with occupied area, not with number of group members!

(7

"Retransmission Request = Send NACK to parent node"

Locally joined nodes...

- Parent node = Nearby overlay node
- Back-off + Broadcast NACK = Local NACK Avoidance
- Overlay nodes broadcast retransmissions

Global NACK avoidance:

- Include seq_{max} in forwarded packets

seq_{max}? seq_{no} up to which packets were successfully received

- Suppress NACKs for $seq_{no} > seq_{max}$

Parent nodes...

- Gather seq_{max} from child (overlay) nodes
- Free buffer up to seq_{min}

seq_min? min{all gathered seq_max, own seq_max}

Problem: Leaf nodes...

- Can't gather seq_{max} (no child nodes)
- Free buffers up to $seq_{min} = seq_{max}$
- Complicates error recovery in LBCs
- Maintain additional buffer:
 - "Error Correction Buffer"
 - Keeps packets discarded from primary buffer

Error Correction Buffer Primary Buffer

Congestion Control

Send seq_{min} instead of seq_{max} to parent node!

Lowest seq_{max} is transmitted to source

- Source learns about packet losses

Congested networks = Many packet drops

- Visible through slowly raising seq_{min}

Don't send new data if seq_{min} raises too slow!

- Use medium for error recovery!
- Applicable in distribution of static media

Protocol features:

TELEMATICS

- Hierarchically clustered receivers
 - No extra routing algorithm needed
- Periodically *adapted overlay topology*
 - Group members may change clusters
- Broadcast medium considered (LBCs)
 - Significantly fewer nodes join the overlay
- Selective retransmission requests
 - Local and global NACK avoidance
- Buffer management
- Congestion Control

Will be improved

Parameters:

- Area 1000m x 1000m
- IEEE 802.11
 - Transmission range: 150m
 - Bandwidth: 2 Mbit/s
- 10 to 50 group members
 - RPGM, $v_{max} = 1 \text{ m/}_{s}$
 - Cluster size: 1 up to 5 nodes
 - Cluster diameter: 80m
- 50 non members
 - Random Waypoint, $v_{max} = 2 \text{ m/}_{s}$
- Unicast routing: AODV
- 20 mobility scenarios averaged

13

Simulation Experiments

Unreliable data delivery

2 x 512 Bytes/sec 30 Receivers

Unreliable Data Delivery

Control Flow (Kbytes/sec) - With/without LBCs

2

Unreliable Data Delivery

High delivery ratios (IEEE 802.11) *10x improvement* on latency using *cross-layer!*

Simulation Experiments

Reliable data delivery

4 x 512 Bytes/sec 30 Receivers

Retransmission Requests Congestion Control

Reliable data delivery

Slight increase of latencies (x1.5)

6. Summary and Future Work

Summary:

- Use cross-layer for efficiency
- Protocol: NICE-MAN
- Performance: 2 Kbytes/sec to 30 pedestrians

Future topics:

- Performance for multiple multicast sources?
- Improve retransmissions
- True rate adaptive congestion control
- Better performing overlays
- More realistic user behavior