

4th Workshop on Applications and Services in Wireless Networks

A Multicast Protocol for Mobile Ad Hoc Networks Using Location Information

Habib Ammari and Hesham El-Rewini {hammari,rewini}@engr.smu.edu

Boston University, Boston, Massachusetts, USA August 8-11, 2004

Mobile Computing and Parallel Processing Lab

- Introduction and Motivations
- > Background
- > Multicast Protocol Design
- > Illustrative Example
- Summary and Perspectives

Introduction and Motivations

Definition: A *mobile ad hoc network* (MANET) is a collection of mobile nodes without any infrastructure Mobile node behavior

- Mobile nodes act as *hosts* (running applications) and *routers* (forwarding for others)
- **MANET** architectural properties
- Autonomous nodes
- Multihop routing
- Limited capabilities

- Distributed operation
- Dynamic topology

MANET routing protocols

- Proactive vs. reactive Unicast vs. multicast
- One-to-one: unicasting One-to-many: multicasting
- Ad hoc networking applications

SMU School of Engineering

- Establishing infrastructured networks is impossible or not cost effective
- Temporary networks for urgent situations such as battlefields, earthquake, conferencing, etc.

Mobile Computing and Parallel Processing Lab

Introduction and Motivations (cont'd)

Why multicast routing protocols?

- Same message sent to a group of mobile nodes
- Group communication in military applications
 Our objective
- Develop a multicast protocol for MANETs
- Minimize routing overhead

Tools

- Location information (GPS-enabled mobile nodes)
- Voronoi diagrams structural properties

Mobile Computing and Parallel Processing Lab

Voronoi diagram

- Geometrical construct defined by a discrete set of sites (points) S = { s₁, s₂, s₃,...,s_n } in the plane
- *Nearest-neighbor rule:* each point is assigned with the closest region of the plane to it
- $B(s_i, s_j) = \{ p \,\widehat{I} \,\widehat{A}^2 / d(s_i, p) = d(s_j, p) : s_i, s_j \,\widehat{I} \, S \}$: bisector of s_i and s_j in S, where d Euclidean distance function

Mobile Computing and Parallel Processing Lab

- $HP(s_i,s_j) = \{p \widehat{\mathbf{I}} \widehat{\mathbf{A}}^2 / \mathbf{d}(s_i,p) < \mathbf{d}(s_j,p) : s_i,s_j \widehat{\mathbf{I}} S\}$
- $HP(s_j,s_i) = \{p \widehat{I} \widehat{A}^2 / d(s_j,p) < d(s_i,p) : s_i,s_j \widehat{I} S\}$
- $VR(s_i, S) = \mathbf{C}HP(s_i, s_j)$: Voronoi region of s_i
- Boundary of a Voronoi region: Voronoi edges
- Endpoints of a Voronoi edge: Voronoi vertices

- The boundary of a region has at most *n-1* Voronoi edges
- Voronoi regions constitute a polygonal partition of the plane: *Voronoi diagram V(S)*
- $V(S) = \mathbf{\check{E}} VR(s_i, S)$: Voronoi diagram of S

Voronoi Diagram Construction Algorithms

- Straightforward approach construct one region at a time as the intersection of *n-1* half-planes **Þ** O(n²) time for one region **Þ** O(n³) time algorithm
- Divide-and-conquer algorithm $\mathbf{P} O(n \log n)$
- Shamos and Hoey $\mathbf{P} O(n \log n)$ time algorithm

MANET modeling

- MANETs can be modeled using Voronoi diagram Neighboring node set
- *NN(s_i):* neighboring node set of s_i is the set of MANET nodes within the transmission range of s_i
 Assumptions
- GPS: location information to MANET nodes

- MANET node s_i broadcasts its location information when joining MANET
- When changing its location, a MANET node might have to broadcast its location information
 - Decision based on its new location and current distances to its neighboring nodes
- Neighboring nodes reply back with their location information with *time-to-live* = 1

Multicast Protocol Design (cont'd)

Multicast domain

- Planar region
- $\mathbf{z} = (\mathbf{MD}, \mathbf{r}_{\mathbf{MD}})$, where $\mathbf{MD} = (\mathbf{x}_{\mathbf{MD}}, \mathbf{y}_{\mathbf{MD}})$
- Membership to the multicast group d(s_i,MD) £ r_{MD}
- {s₅,s₈,s₁₀}: multicast group wrt to s₁

SMU School of Engineering

Authorized Forwarders

SMU School of Engineering

- MANET node s_a ÎNN(s_s) is an authorized forwarder of a multicast packet broadcast by s_s if s_a's Voronoi region share at least one Voronoi edge with that of MD in s_s's localized Voronoi diagram VG_{ss} wrt to NN(s_s) È {s_s} È {MD}
- s_a constructs its localized Voronoi diagram wrt to NN(s_a) È {s_a} È {MD} \ (AF(s_{cs}) È {s_{cs}})

Mobile Computing and Parallel Processing Lab

- 13. else drop MP
- 14. endif
- 15. endif
- 16. endif

end

Mobile Computing and Parallel Processing Lab

- Assume s₁ wants to send a multicast packet to
 z = (MD, r_{MD})
- $NN(s_1) = \{s_2, s_3, s_4, s_6, s_7, s_9\}$ $NN(s_2) = \{s_1, s_3, s_5, s_6, s_8\}$ $NN(s_6) = \{s_1, s_2, s_3, s_5, s_8, s_9, s_{10}\}$ $NN(s_9) = \{s_1, s_3, s_4, s_6, s_7, s_8, s_{11}\}$

Illustrative Example (cont'd)

- Location-based multicast (geocasting) provided by Y. Ko and N. Vaidya: efficient geographical multicast protocol for MANETs
- Their algorithm is based on location and distances between mobile nodes
- It fails in case of blank space between source and multicast domain

Blank space between source and multicast domain

Mobile Computing and Parallel Processing Lab

SMU School of Engineering

- Multicast protocol for mobile ad hoc networks
- Location information and structural properties of Voronoi diagrams (authorized forwarders to reduce the routing overhead)
- Mathematical analysis of the proposed protocol
- Simulation of the proposed protocol using different mobility models (RWP, RPGM)
- Using this protocol in the integration of the MANETs and the global Internet (providing mobile services)

Mobile Computing and Parallel Processing Lab

Useful References

- **F. Aurenhammer, "Voronoi Diagrams A Survey of a** Fundamental Geometric Data Structure," *ACM Computing Survey*, Vol. 23, No. 3, September 1991.
- Y. Ko and N. Vaidya, "Geocasting in Mobile Ad hoc Networks: Location-Based Multicast Algorithms," *Second IEEE Workshop on Mobile Computer Systems and Applications*, New Orleans, Louisiana, USA, February 25-26, 1999
- M. Shamos and D. Hoey, "Closest-Point Problems," Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science, The University of California, Berkeley, USA, 13-15 October 1975.

Mobile Computing and Parallel Processing Lab

A Multicast Protocol for Mobile Ad Hoc Networks Using Location Information*

Habib Ammari and Hesham El-Rewini

{hammari,rewini}@engr.smu.edu

* Work supported by the Department of Defense (DoD)

Thank you!

Questions?

Mobile Computing and Parallel Processing Lab