A Flexible Architecture for Customizing Web Streams for Wireless Clients

Jesse Steinberg and Joseph Pasquale
University of California, San Diego
Department of Computer Science and Engineering
Motivation: Web + Wireless
Web Stream Customizers

*Two points of control between client and server
Communication Path

*Customizer and Customizer Assistant can be dynamically deployed
Example: Adaptive Image Filter

Web Browser → CA → CIS → CS → Customizer → Web Server

Detect Throughput, Send it to Customizer for Next Request

Compress Image Based on Throughput from CA

(Wireless Link)

Client Base Station
Where Do Customizers Run?

• Can be a third party server
 – Flexibility of location

• A personal server can be used
 – Personal Customizer Management Server (PCMS)
 – Take advantage of availability of user owned host or account
 – Can use resources such as persistent storage
Multiple Active Customizers

CLIENT

WEB BROWSER

Client Integration Server (CIS)

WEB SERVER

Customizer Server (CS)

CUSTOMIZER

Personal Customizer Management Server (PCMS)

CUSTOMIZER

WEB SERVER

Customizer Server (CS)

CUSTOMIZER

WEB SERVER
Customizer Applications

• Adaptive Compression
 – Text, image filtering

• Transaction Reliability
 – Mask failures, store results at CS

• Selective Encryption

• Network Flow Buffering
 – Buffer and regulate streaming traffic
 – E.g. Streaming multimedia
Network Flow Buffer: Closer Look

Motivation

INTERNET

1. Client Memory

2. LAN Conditions

3. WAN Conditions

4. Server Conditions

CLIENT

WAN/LAN GATEWAY

SERVER

NFB Customizer

CLIENT

CUSTOMIZER

SERVER
NFB Smoothing

Case 1:

Higher WAN B/W → Buffer Fills Over Time → Lower LAN B/W

Case 2:

Lower WAN B/W → Buffer Drains Over Time → Higher LAN B/W

* Goal: Maintain Smooth, Uninterrupted Video Playback
Smoothing Performance Evaluation

Client (RealPlayer™)
REGULATED LAN

NFB Smoothing Customizer

REGULATED WAN

Customizer Server ("Gateway", dummynet regulates WAN/LAN B/W)

Video Server (HTTP And RTSP Server)
Smoothing Experiment

Bandwidth Cycle
2 cycles of 24 seconds each
12 bandwidth changes per cycle

Bandwidth (Kbytes/s)

Time (s)
Smoothing Results: Playback

[Graph showing video playback with lines for HTTP, Real(tm), and HTTP/NFB]
Smoothing Results: Buffering

![Video Buffering Graph](Image)

- **HTTP**
- **Real (tm)**
- **HTTP/NFB**

Amount Buffered (Kbytes x 100)

Time (s)
NFB Buffering Breakdown

![NFB Buffering Breakdown Graph](image-url)
Summary

• Novel Web middleware architecture for improved wireless web access
 – Remote computation, dynamic deployment, two points of control, callback programming model

• Supports a variety of applications
 – Filtering, encryption, transaction recorder, video buffering
 – NFB smoothing can improve video playback

• Implementation
 – Java-based and uses existing Web mechanisms
Customizers Are Efficient

• Customizer overhead ~ 4.8 ms
 – Roughly 1-5% of typical transfer times

• Typical transfer times from UCSD:
 – www.yahoo.com ~ 128 ms
 – www.suntimes.com/index ~ 404 ms
 – www.cnn.com ~ 475 ms

• Above doesn’t consider performance improvements of the Customizer