
Cross-Modal Prediction Consistency based Self-Training
for Unsupervised Domain Adaptation

Dongwan Kim1 Geeho Kim1 Seonguk Seo1 Yumin Suh1 Bohyung Han1

Taeho Lee2 Jongwoo Han2 Hyejeong Jeon2

1ECE & ASRI, Seoul National University, Korea 2AI Laboratory, LG Electronics

Abstract

We propose an unsupervised domain adaptation method
based on self-training. Our method collects target exam-
ples with confident pseudo labels and uses them as a new
source domain. Specifically, we adopt a two-stage frame-
work to train the network. At the first stage, we train several
different models independently from each other while vary-
ing the backbone architecture and input modality. We se-
lect confident target training samples, which have the same
label predictions from all models, and augment the source
dataset with the selected confident samples and their corre-
sponding pseudo labels. At the second stage, we retrain a
network to adapt to the target domain using the augmented
source and target domain datasets. In the experiments, our
method consistently improves accuracy from the baseline
for two test domains (clipart and painting) in the Domain-
Net dataset.

1. Introduction

Unsupervised domain adaptation aims to transfer knowl-
edge learned from label-rich source domains to the target
domain using only unlabeled examples. Recently, some ap-
proaches based on self-training [7, 9] or pseudo target label-
ing have shown promising results for unsupervised domain
adaptation [10, 2]. They alternately iterate between train-
ing a classifier and labeling target training examples. Their
common observation is that precise label prediction and its
confidence estimation is crucial to achieve high accuracy by
avoiding overfitting to noisy pseudo labels. In particular, a
method which works for various conditions without adjust-
ing hyper-parameters is desired.

To this end, we propose a framework for selecting confi-
dent target example which is robust against hyper-parameter
selection. Our intuition is that if models trained from multi-
ple different conditions agree on label prediction of a given
target example, then the predicted label is likely to be cor-
rect. Specifically, we train multiple models independently

from each other where each model is trained with input im-
ages represented in a certain modality, such as RGB and
edge images. In addition, models with different backbone
architectures are trained to further diversify the pool of
models.

We adopt a two-stage framework to train a network. At
the first stage, several different classifiers are independently
trained from the source domains and adapted to the target
domain. Based on the trained models, we select a confident
subset of target training examples, whose predicted labels
from all the models are same, and augment the source do-
main with their corresponding pseudo labels. At the sec-
ond stage, we train a new model with the augmented source
domains and the original target domains. Our experiments
show that this second stage training consistently improves
the accuracy over baseline models by introducing a pseudo-
target classification loss for each of the two target domains
(clipart and painting) from the DomainNet dataset.

2. Related Works

Self-training or noisy label learning has been widely in-
vestigated in unsupervised and semi-supervised learning.
Reed et al. [7] adopts a bootstrapping method for noisy la-
bel learning. Sukhbaatar et al. [9] introduces a noise layer
to match the network outputs with the noisy label distribu-
tion. Zou et al. [14] proposes a class-balanced self-training
framework for semantic segmentation and uses spatial pri-
ors to refine pseudo labels. Yu et al. [11] introduces a prob-
abilistic model to deal with edge misalignment by treating
it as latent variable optimization.

Several recent domain adaptation approaches have
adopted self-training; They estimate target pseudo labels
and directly train a model for the target domain. They em-
ploy different strategies to reduce the adversarial effect of
noisy pseudo labels. Moving Semantic Transfer Network
(MSTN) [10] aligns source centroid and pseudo label target
centroid for each class in feature space. Asymmetric Tri-
training Network (ATN) [8] and Collaborative and Adver-
sarial Network (CAN) [12] estimate pseudo labels based on



the consensus of multiple models. Domain-Specific Batch
Normalization (DSBN) [2] reserves separate batch normal-
ization for each domain and train the models with two clas-
sification losses—the source domain with ground-truth la-
bels and the target domain with pseudo labels. Confidence-
Regularized Self-Training (CRST) [13] treats pseudo labels
as continuous latent variables and optimizes them by label
and model regularization. Most of them needs to carefully
set the hyper-parameters, whereas the proposed method is
less sensitive to the number of models used to select pseudo
labels.

3. Our Approach

For a given baseline domain adaptation method, we pro-
pose a two-stage training procedure to enhance its accuracy.
At the first stage, we train several different baseline models
while varying the input image representations and the back-
bone architectures. Based on the label predictions on tar-
get training examples from the trained models, we collect a
set of target domain examples with confident labels, which
is used to augment the original source domain dataset. At
the second stage, We retrain a network using the baseline
domain adaptation method while employing the augmented
source dataset and the original target dataset. Since the con-
fident subset of target domain dataset is treated as an addi-
tional source domain with their pseudo labels, the second
stage of training improves accuracy from the baseline.

3.1. Problem Statement

Consider data from two distinctive domains, the source
domain S = {Xs, Ys} and the target domain T = {Xt}.
An example from the source domain xs ∈ Xs has an asso-
ciated label ys ∈ Ys, whereas one from the target domain
xt ∈ Xt has no paired ground-truth label. We employ a
feature extractor f(x;mf ) and a classifier c(·;mc), where
mf and mc represent dropout masks that can be applied at
an arbitrary layer of each sub network. The feature extractor
creates a latent vector from a data point sampled from either
of the two domains x ∼ S ∪T . The latent vector is used as
an input to a classifier. As in [5], we denote the entire neu-
ral network as a composition of the feature extractor and the
classifier: h(x;mf ,mc) = c(f(x;mf );mc). For given x,
the predicted label is denoted as g(x) = argmax c(f(x)).

3.2. Baseline Model: Drop to Adapt with Stochastic
Weight Averaging

We adopt the single source domain adaptation method
with Drop to Adapt (DTA) regularization loss [5] with
SWA [4] as our baseline. (Please refere to [5] for more de-
tails.) Given the source dataset, S, and the target dataset, T ,

the complete DTA loss becomes

L(S, T ) = LC(S)+λ1LDTA(S)+λ2LDTA(T )+λ3LE(T ),
(1)

where LC denotes the cross-entropy loss for classification,
LE denotes the entropy minimization term, and λ1, λ2, λ3
are weights for each loss term. The DTA loss, LDTA, can
be decomposed into two parts

LDTA(X ) = LfDTA(X ) + LcDTA(X ), (2)

since it is applied to both the feature extractor and the clas-
sifier networks. This loss term minimizes the divergence
between two predictions of a single input x: one with a
random dropout mask ms and another with an adversar-
ial dropout mask madv . The adversarial dropout mask is
specifically generated to maximize divergence between the
two predictions, and the network aims to minimize this di-
vergence. In general, LDTA can be expressed as:

LDTA(X ) = Ex∼X
[
D[h(x;m

s), h(x;madv)]
]
, (3)

where h(x;m) expresses the model with input x and
dropout maskm, andD is a measure of divergence. Specif-
ically, we employ the Kullback-Leibler (KL) divergence in
our implementation. Equation 3 becomes LfDTA by us-
ing adversarial dropout on the feature extractor, while it
becomes LcDTA when adversarial dropout is used on the
classifier,

The entropy loss LE penalizes target samples for being
too close to the decision boundary:

LE(T ) = −Ex∼T
[
h(x)T log h(x)

]
. (4)

Finally, we employ Stochastic Weight Averaging
(SWA) [4] during optimization. SWA has shown to sig-
nificantly improve the generalization of neural networks.
This is also true for consistency-based methods [1], such
as DTA. By averaging the weights over multiple epochs of
the training, SWA helps our baseline model achieve consis-
tently high single-model performances on both validation
and test datasets.

3.3. A Two-Stage Training Procedure

At the first stage, we train a baseline network to mini-
mize the following loss:

L(S, T ) = LC(S)+LDTA(S)+LDTA(T )+LE(T ). (5)

We trainK baseline models independently from each other,
for different combinations of image representations (RGB
and edge) and backbone architectures (Res-101 and SENet-
154). We augment source datasets with the target training
samples of which K different baseline models make iden-
tical label predictions, using the common label predictions



Table 1. Accuracy using SENet-154 as a backbone architecture (%) : with (w/o) test time augmentation

Clipart Painting Avg.

Single Model Image 74.14 (74.11) 62.43 (61.38) 67.03 (66.38)
Pseudo 75.60 64.55 68.89

Ensemble
Image + Edge (74.56) (62.11) (67.00)

Image + Edge + Pseudo 76.37 64.87 69.39
Image1 + Image2 + Edge1 + Edge2 + Pseudo 76.32 65.31 69.64

Table 2. Accuracy of different backbone architectures (%)

Sketch Clipart Painting Avg.
ResNet-50 70.12 55.32 61.13
ResNet-101 71.78 56.53 62.52
SEResNeXt-101 68.17 57.67 61.80
SENet-154 74.11 61.38 66.38

Table 3. Accuracy comparison with existing method (%) on
ResNet-101

Clipart Painting Avg.
M3SDA-β [6] 58.60 52.30 55.45
Ours 71.78 56.53 62.52

as pseudo labels. Formally, a pseudo labeled domain T̃ and
the augmented source datasets can be expressed as:

T̃ = {(x, g(x))|x ∈ T , g(x) = g1(x) = · · · gK(x)} (6)

S̃ = S ∪ T̃ (7)

At the second stage, we train a network to minimize the
following loss with the augmented source datasets.

L(S̃, T ) = LC(S̃)+LDTA(S̃)+LDTA(T )+LE(T ) (8)

4. Experiments
4.1. DomainNet Dataset

DomainNet dataset [6] consists of 0.6 million images
with 345 categories across six domains: Clipart, Infograph,
Painting, Quickdraw, Real, Sketch. In the multi-source do-
main adaptation challenge, we utilize Infograph, Quick-
draw, Real, Sketch as source domains and Clipart, Painting
as target domains each.

4.2. Implementation Details

The proposed model consists of a feature extractor and
classification network. For the feature extractor, we use
modified version of Fully Convolutional Networks (FCN)
on SENet-154 [3] as a backbone architecture. For the classi-
fier, we utilize a nonlinear classifier which consists of three
fully connected layers with 1024 channels for each with

ReLU activations. More specifically, we apply the channel-
wise adversarial dropout (CAdD) and element-wise adver-
sarial dropout (EAdD) proposed in [5], which are inserted
in the last convolution layer of SENet-154 models and the
second fully connected layer, respectively.

Images are resized to 224 × 224 for model input. We
augment the source training data with random resized crop
and random horizontal flip, and the target training data with
resize and random horizontal flip. For better prediction, we
apply test-time augmentation by ensembling the output log-
its of four different augmentations of the same image: 1)
resize, 2) resize + horizontal flip, 3) random resized crop,
and 4) random resized crop + horizontal flip. The test time
augmentation allows us to extract more accurate and reli-
able logits.

We train our model with Stochastic Gradient Descent
(SGD), on a minibatch size of 64 images. The momentum
is set to 0.9, and the learning rate, which is halved after 3
epochs, is initialized as 4 × 10−3. As mentioned earlier,
we employ SWA in our optimization process. During train-
ing, SWA is identical to SGD, but it stores and additional
set of the model weights as the running mean over multiple
epochs. We select SWA to start 1 epoch after the learn-
ing rate decay (3rd epoch), and update the running mean
after every epoch until our training ends (10 epochs). At
the end of training, the model weights are substituted with
the running means, and one last iteration over the training
set is performed to stabilize the batch normalization layers.
Note that in this last step, we do not update any weights,
but only pass the images through the network to update the
running statistics in batch normalization. From Eq. 1, we
set λ1, λ2, λ3 as 2, 4, 0.02, respectively. For all other hy-
perparameters specific to the DTA loss - such as δc, δe, and
ramp-up factor - we use the same hyperparameters as Lee et
al. [5] in the VisDA-2017 classification experiments. Note
that, to tune hyperparameters, we used the validation do-
main (sketch) as the target dataset. All hyperparameters
used for both test domains are identical to the best hyper-
parameters we found on the sketch domain.

For the second stage training, we mostly use the same
hyperparameters as our baseline training; however, we
change the SWA frequency to two times per epoch (once
every half-epoch) and only train for 7 epochs in total. Our
final model is an ensemble of 5 independently trained mod-



els: 1,2) two DTA models with two random seeds, 3,4) two
DTA models using edge images with two random seeds, and
5) a model trained using our second stage procedure.

4.3. Evaluation on DomainNet Dataset

In Table 1 we present our model’s performances on the
test domains, as displayed on CodaLab. Note that our
pseudo (second stage) model outperforms the all other sin-
gle model performances by a large margin. Finally, mul-
tiple single models can be ensembled, resulting in a much
stronger model. Table. 2 shows the accuracy for different
backbone architectures using the baseline training method.
Again, these individual models were submitted to CodaLab
to measure performance. By examining the accuracy of
each backbone model, we chose SENet-154 as our main
backbone architecture. Finally, we compare our method
with existing domain adaptation method in Table. 3, which
shows that our method largely outperforms the existing
method in both cases when clipart or painting is a target
domain.

5. Conclusion
In this abstract, we presented our domain adaptation

method based on self-training. By using this method, our
team was able to place 3rd in the Visual Domain Adapta-
tion Challenge (VisDA-2019).

References
[1] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and An-

drew Gordon Wilson. There are many consistent explana-
tions of unlabeled data: Why you should average. In ICLR,
2019.

[2] Woong-Gi Chang, Tackgeun You, Seonguk Seo, Suha Kwak,
and Bohyung Han. Domain-specific batch normalization for
unsupervised domain adaptation. In CVPR, 2019.

[3] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, 2018.

[4] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018.

[5] Seungmin Lee, Kim Dongwan, Namil Kim, and Jeong
Seong-Gyun. Drop to Adapt: Learning Discriminative Fea-
tures for Unsupervised Domain Adaptation. In ICCV, 2019.

[6] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. arXiv preprint arXiv:1812.01754, 2018.

[7] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian
Szegedy, Dumitru Erhan, and Andrew Rabinovich. Train-
ing deep neural networks on noisy labels with bootstrapping.
ICLR, 2015.

[8] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.
Asymmetric tri-training for unsupervised domain adaptation.
In ICML, 2017.

[9] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. Training convolutional
networks with noisy labels. arXiv preprint arXiv:1406.2080,
2014.

[10] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen.
Learning semantic representations for unsupervised domain
adaptation. In ICML, 2018.

[11] Zhiding Yu, Weiyang Liu, Yang Zou, Chen Feng, Srikumar
Ramalingam, BVK Vijaya Kumar, and Jan Kautz. Simulta-
neous edge alignment and learning. In ECCV, 2018.

[12] Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. Col-
laborative and adversarial network for unsupervised domain
adaptation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018.

[13] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jin-
song Wang. Confidence regularized self-training. ICCV,
2019.

[14] Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong
Wang. Unsupervised domain adaptation for semantic seg-
mentation via class-balanced self-training. In ECCV, 2018.


