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Abstract

Border Gateway Protocol (BGP) is the de facto stan-
dard used for interdomain routing. Since packet forward-
ing may not be possible until stable routes are learned, it
is not only critical for BGP to converge but it is important
that the convergence be rapid. The distributed and asyn-
chronous nature of BGP in conjunction with local policies
makes it difficult to analyze with respect to convergence be-
havior. We present a novel model which, to our knowl-
edge, is the first one to permit analysis of convergence in
the aggregate (i.e., over all message exchange orders be-
tween routers regarding route advertisements), rather than
worst case behavior. We introduce the notion of probabilis-
tic safety as requiring the probability of convergence to be
1. We provide a necessary and sufficient condition char-
acterizing probabilistic safety that shows that probabilis-
tic safety accommodates BGP configurations whose poten-
tial divergence stems solely from pathological message se-
quences. More generally, we show how to compute for any
BGP configuration its probability of convergence. For prob-
abilistically safe configurations, we present procedures for
computing their expected time to converge as well as the
probability distribution on their convergence times. The
ability to compute these quantitative characteristics makes
our work “constructive” and provides the basis for further
understanding and deriving procedures for optimizing net-
work characteristics. Finally, we simulate several network
examples and verify the consistency between our analysis
and the simulations.

1 Introduction

The current de facto standard for interdomain routing is
the BGP4 protocol [11, 12, 5]. To provide global connec-
tivity among autonomous, financially competing domains,
an important feature of the protocol is its ability, for each

autonomous domain, to use locally independent policies in
their route selection criteria and in deciding which routes
they choose to export to their neighbors in the network.
While BGP’s policy-based nature allows enhanced flexibil-
ity in routing decisions, it is well known that it also leads
to unexpected or undesirable convergence behavior [13, 3].
For example, it can give rise to configurations that may
never converge, and path instability may result in delayed
convergence [7, 8] which is often slowed further by un-
intended side effects of other performance tweaks such as
route flap dampening [9]. Moreover, the ability of the net-
work to transfer packets is reduced since forwarding paths
may be invalid during route convergence.

Because of the distributed and asynchronous nature of
the execution of BGP, its precise behavior, even for a fixed
network topology and policy configuration, cannot be de-
terministically predicted since it is dependent on the par-
ticular sequence in which different routers send or receive
BGP route advertisements. An infinite number of such se-
quences are consistent with each router faithfully following
the protocol. Previous works on divergence or delayed con-
vergence have shown the existence of route advertisement
sequences in which the undesired convergence behavior (di-
vergence or long time to converge) could occur. While such
work is extremely valuable, it only illustrates a particular
sequence leading to divergence without regard to whether
such a case is common or pathological. As such, this can be
viewed as the worst case behavior of BGP. In practice, the
behavior of BGP would be governed by route advertisement
sequences that are “likelier” to occur and it is a priori un-
clear whether a particular sequence exhibiting bad behavior
corresponds to a pathological one unlikely to occur or one
that is representative of its commonly observed behavior.
Consequently, the main interest of this paper is in develop-
ing a better understanding of the convergence properties of
BGP in the aggregate (or expected) when averaged over all
possible route advertisement sequences (that are consistent
with the protocol).



We develop a probabilistic model of BGP execution that
enables the analysis of its expected convergence behavior.
The key insight enabling the formal development of the
model is to discretize the execution into time intervals such
that: (1) any BGP speaker in the network sends a route
advertisement no more than once during any single time
interval and, (2) the occurrence of the event of any BGP
speaker sending a route advertisement in any time interval
is independent of the occurrence of route advertisements at
any other speaker or during any other time time interval.
These two properties ensure that the evolution of the prob-
ability distribution of the possible current best paths (rep-
resenting the network state) over these time intervals is a
Markov process, which leads to our formulation of the dy-
namical behavior of BGP as a linear system. In particular,
we show that the vector representing the probability distri-
bution of the possible network state at any instant is a lin-
ear function of its value at the previous instant. The linear
function itself can be computed from the network topology
and policy configuration together with probabilities repre-
senting the frequencies of route advertisements at different
nodes. Significantly, the formulation of BGP’s probabilistic
dynamics as a linear system allows leveraging the body of
work on stability analysis for linear systems (c.f. [14]).

We demonstrate the utility of this model for several prob-
lems related to the analysis of the expected convergence
behavior of BGP. The first problem we consider is that of
determining whether a BGP configuration is unsafe, i.e.,
can exhibit oscillating or divergent behavior. In the non-
probabilistic setting, a BGP configuration is considered to
be safe [3, 2], if every (fair) route advertisement sequence
results in convergence. In this paper, we define a BGP con-
figuration to be probabilistically safe if its probability of
convergence (over the space of advertisement sequences)
is 1. Trivially, any safe BGP configuration is probabilis-
tically safe, but we show that the class of probabilistically
safe BGP configurations includes configurations that would
not be deemed safe by previous definitions. We provide a
necessary and sufficient condition for probabilistic safety.
The intuitive reading of this characterization is as follows.
An oscillating behavior of a BGP execution can be consid-
ered to be “transient” or escapable if there is some adver-
tisement sequence that would cause it to reach a converged
or stable state, and an oscillating behavior is “permanent”
or inescapable if no advertisement sequence from that point
onwards can result in convergence. Our characterization
shows that a BGP configuration is probabilistically safe if
and only if it has no inescapable oscillations. To our knowl-
edge, this is the first formal proof showing that escapable
oscillations therefore correspond to pathological route ad-
vertisement sequences that are unlikely to persist. More
generally, we present a procedure that, given a BGP con-
figuration and probability distribution on the possible initial

network state, computes its probability of convergence. This
procedure can be used to determine whether a BGP configu-
ration satisfies the more relaxed requirement of converging
with a probability that is at least some desired threshold,
e.g., that it has a 99% probability of convergence.

Our second set of results covers bounds on convergence
time. We provide a general method to compute the expected
time to converge for any given BGP configuration. The
method is based on showing that, for any arbitrary BGP
configuration, the expected time to converge from any net-
work state can be expressed as a system of linear equations
— expected convergence time can therefore be obtained by
solving this system. We illustrate this general computation
on two families of examples. The first example we consider
is that of a full mesh network with shortest path routing.
The convergence behavior when the originating destination
withdraws its prefix announcement is one of the classical
examples where slow convergence behavior has been ob-
served in practice, and where this behavior had been previ-
ously argued [7] by demonstrating a long route advertise-
ment sequence required for convergence. We show for this
example that the expected time to converge has the same
variation with the size of the network as the worst case time
to converge, thus corresponding to the observed behavior.
On the other hand, we exhibit a second class of networks for
which the expected time to converge is less than the worst
case time to converge by a difference of O(n2), where n is
the size of the network. Together, these two examples show
that there is little correlation, in general, between the worst
case number of updates and the expected number of updates
before convergence. Our second result on expected time to
converge is a method for computing the probability distri-
bution on the convergence times for a BGP configuration.
Besides providing a finer resolution on the expected conver-
gence time, this information could be useful, for example,
in determining how long one should wait to ensure that the
likelihood of convergence meets some required threshold.

Finally, we present simulations suggesting that the as-
sumptions reflected in our proposed probabilistic model
provide a faithful approximation of the behavior of BGP.
In our simulations of probabilistically safe BGP configura-
tions, we never observe divergence even if they are unsafe
in the non-probabilistic sense. With regard to expected con-
vergence time, the simulation results are consistent with the
model-based analysis when queueing effects are not signif-
icant.

The rest of the paper is organized as follows. In Sec-
tion 2, we show how the behavior of BGP can be modeled
as a linear stochastic system. Section 3 details the results on
convergence probability and Sections 4 and 5 develop the
methods for computing expected waiting time and proba-
bility distribution on convergence times. Section 6 reports
our simulation results and we conclude with directions for



further work in Section 7.

2 BGP Execution as a Linear Stochastic Sys-
tem

We present a model of BGP execution with respect to
which we can obtain quantitative measures of expected be-
havior and convergence speed. Our formal development is
based on the Stable Paths Problem (SPP), proposed in [3]
where it was shown to serve as an abstract model of EBGP
(Exterior BGP) configurations where the MED (Multi Exit
Discriminator) attribute does not influence path selection.
The Stable Paths Problem is, however, expressive enough to
encompass import/export policies and policies based on set-
ting the local preference attribute. We review the SPP model
of BGP configurations in Section 2.1. Section 2.2 presents
an (automata-theoretic) model for the (non-probabilistic)
execution behavior of a network whose BGP configuration
is specified as an SPP instance. This serves as the basis for
a model of the probabilistic behavior of BGP, developed in
Section 2.3.

2.1 BGP Configuration Model

In the SPP model of BGP configurations [3], the network
is modeled as an undirected graph G = (V, E) with vertices
v ∈ V representing Autonomous Systems (AS) (with an as-
sociated BGP speaker). Each edge in (element of) E is of
the form {u, v} where u, v ∈ V and represents a peering
relationship between BGP speakers at u and v. Route se-
lection is considered with respect to one destination prefix
(nlri); as such we take V = {0, 1, . . . , n} with the node
0 having special status as the originating AS to which all
other nodes are trying to establish routes. As notational
convenience, we define the neighbor set N(u), for any node
u ∈ V , as the set {v | {u, v} ∈ E}. Route advertisements
consist of AS-level paths in which no AS appears twice;1 as
such, an advertisement is modeled as a path in G that is a
sequence of nodes (vkvk−1 . . . v0) such that vk �= vk−1 �=
· · · �= v0 and {vi, vi−1} ∈ E for 1 ≤ i ≤ k. The empty
path is denoted ε and is used to indicate the lack of any route
to the destination 0. Nonempty paths P = (v1v2 . . . vk)
and Q = (w1w2 . . . wm) can be concatenated if vk = w1,
in which case their concatenation is denoted PQ and de-
fined to be the path (v1v2 . . . vkw2 . . . wm). For any path
P , its concatenation with the empty path is defined to be the
empty path, i.e., Pε = εP = ε. We use vP as abbreviation
for the path concatenation (v, u)P , where u is the first node
appearing in P . Thus, when a router v receives a route P
from one of its neighbors, it can infer vP to be a candidate

1The effect of AS-padding could be equivalently achieved by suitable
setting of the local preference attributes.

route from itself to the destination. In the E-BGP setting,
when there is a choice between two different routes P1, P2

at a router, the selection among the two is determined as:
(a) picking whichever of the two paths has a higher local
preference attribute set, (b) otherwise, picking the shorter
of the two paths, and (c) otherwise, picking the route with
the lowest next hop. This is abstracted in the SPP model by
taking a ranking function among paths that enjoys certain
properties based on this path selection procedure. Finally,
export and import policies are abstracted as a set of permis-
sible routes at each router which are the only ones that it
could ever select.

Definition 2.1 (BGP Configuration Model) An instance
of a Stable Paths Problem (SPP) is S = (G,P , Λ), where
G = (V, E) is an undirected graph, the set of permitted
paths P = {Pv | v ∈ V − {0}} with each Pv a set of paths
such that each non-empty path in Pv is a simple path from
v to the node 0, and Λ = {λv | v ∈ V − {0}} with each
λv : Pv→N a ranking function that assigns each permitted
path a natural number. Additionally, the following condi-
tions need to be satisfied:

(SP1) The empty path is permitted: ε ∈ Pv for every v ∈
V − {0}.

(SP2) The empty path is lowest ranked: λv(ε) = 0 for ev-
ery v ∈ V − {0}.

(SP3) Strictness: If λv(P1) = λv(P2) then either P1 = P2

or P1 = (vu)P ′
1 and P2 = (vu)P ′

2 for some node u
and paths P ′

1, P
′
2.

Let S = ((V, E),P , Λ) be an instance of SPP. For a node
u ∈ V and a set of paths W ⊆ Pv with distinct next hops,
we define the best path in W with respect to the policy at
u, denoted max(u, W ), to be the path P ∈ W such that
λu(P ) ≥ λu(P ′) for all P ′ ∈ W if W �= ∅ and to be the
empty path ε if W = ∅. Note that because of the strictness
condition (SP3), there is a unique path P ∈ W satisfying
the conditions of this definition if W �= ∅.

2.2 BGP Execution Model

Given an instance of a BGP Configuration S, we now
define a model representing the execution of BGP in S, fol-
lowing either a prefix announcement or prefix withdrawal
(by the AS 0). The execution model is presented as an au-
tomaton with (labeled) transitions, based on the following
intuitions. BGP execution proceeds by each node (router) in
the network asynchronously advertising routes (to the des-
tination AS represented by node 0) to its neighbors. The
sending of an advertisement by a router u is abstracted as
an event advertiseu. The discrete steps of the execution of
the automaton are taken to be time-intervals such that when



a node sends a route advertisement, it has already processed
route advertisements sent (by other nodes) in any previous
time interval but not those sent in the same interval. The
states of the automaton representing the execution can then
be taken to be the latest route advertisements sent by each
node, with transitions labeled by the set of nodes that have
sent route advertisements in that time-interval.

Let S = ((V, E),P , Λ) be an instance of SPP. Define
a path assignment π to be a function that maps each node
u ∈ V − {0} to a permitted path π(u) ∈ Pu; intuitively,
the path assignment represents the latest routes advertised
by each node. We denote the set of all path assignments
for S by Q(S). Depending on whether we are consider-
ing prefix announcement or withdrawal, any path assign-
ment π is extended to the node 0 by defining π(0) = 0 for
prefix announcement and π(0) = ε for prefix withdrawal.
Given a path assignment π, the route that would be adver-
tised by a node u, Nextu(π) = max (u, choices(u, π)),
where choices(u, π) is defined as the set {(uv)π(v) ∈
Pu | {u, v} ∈ E}, with π(0) taken according to whether
prefix announcement or withdrawal is being considered.

We now describe the automaton representing the exe-
cution following a prefix announcement or a prefix with-
drawal.

(States) The state set is Q(S), i.e., states of the global au-
tomata are path assignments. For modeling a new prefix
announcement, the initial state is taken to be the path as-
signment π such that π(u) = ε for every node u ∈ V −{0}.
For prefix withdrawal, the initial state can be any path as-
signment (representing the last route advertisements before
the prefix withdrawal message is sent by 0).

(Transition Labels) Transitions are labeled by sets of events
of the form advertiseu for each u ∈ V − {0}. In other
words, each transition label is a set {advertiseu | u ∈ U}
for some U ⊆ V − {0}.

(Transitions) In state π, on a label e = {advertiseu |u ∈ U}
for some set U , the transition relation π

e→π′ is defined by
π′(v) = π(v) for any v �∈ U and π′(u) = Nextu(π)(u) for
any u ∈ U .

A state π is stable if for any set U ⊆ V −{0}, we have that
π

e→π for e = {advertiseu | u ∈ U}.
Our execution automaton model differs from the notion

of evaluation graph defined in [3] primarily in that our tran-
sition labels consist of route advertisement events while
evaluation graphs are based on route recomputation events.
This alternate interpretation of labels allows us to natu-
rally model MRAI (Minimum Route Advertisement Inter-
val) timers in BGP configurations (further described in Sec-
tion 6).

2.3 Probabilistic Execution Model for BGP

Given an SPP instance S, we fix some enumeration
π1, . . . , π|Q(S)| of all the path assignments (i.e., elements
of Q(S)). When clear from the context, we will often say
that the network state is i to mean that the automaton state is
πi. The automaton capturing the global behavior described
in Section 2.2 can be represented by the following transition
matrix, where for any set T , we use 2T to denote its power
set consisting of all subsets of T .

Definition 2.2 (Transition Matrix) For an SPP instance
S = ((V, E),P , Λ), the transition matrix A(S) of dimen-
sion |Q(S)| × |Q(S)| with entries A(S)ij ⊆ 2V −{0} is
defined as:

A(S)ij = {U | πi
{advertiseu | u∈U}→ πj} .

Each entry of A(S)ij of the transition matrix given by
Definition 2.2, therefore, indicates the possible sets of nodes
that must advertise for the automaton state to change from
the path assignment πi to πj .

To describe the probabilistic evolution of the path assign-
ments under BGP execution, assume some probabilities on
the occurrence of the events advertiseu for nodes u other
than the destination 0. This is given by a tuple p = (p1, . . . ,
pn), which we call an activation probability vector, with
pi representing the probability of the event advertise i, i.e.,
node i sending a route advertisement. We assume that the
occurrence of each advertise i is an independent event —
this assumption is reasonable because the decision by each
node to advertise its best path is a local one without any
global coordination among the times that different nodes
send their advertisements. Under this assumption, an acti-
vation probability vector p yields probabilities for the oc-
currence of an event of the form {advertiseu |u ∈ U} for
some U ⊆ V − {0} corresponding to the nodes exactly in
the set U advertising their best paths, and probabilities for
the occurrence of a set of such events which can be calcu-
lated as follows. For a set U ∈ 2V −{0}, we define

p(U) =

(∏
i∈U

pi

)∏
j �∈U

(1 − pj) (1)

corresponding to the product of the probabilities of the
nodes in U advertising and the probabilities of the nodes
not in U not advertising, since each of these events is mutu-
ally independent. For a set E ⊆ 2V −{0}, we define

p(E) =
∑
U∈E

p(U) (2)

since each of these events is mutually exclusive. It can be
easily seen that for the space of all possible events corre-
sponding to the set 2V −{0}, we have that p(2V −{0}) = 1
for any probability vector p.



An activation probability vector induces a transition ma-
trix that can be used to represent the probabilistic evolution
of the states under BGP execution.

Definition 2.3 (Probabilistic Transition Matrix) Let S =
((V, E),P , Λ) be an SPP instance. For an activation prob-
ability vector p, the induced probabilistic transition ma-
trix A(S)p of dimension |Q(S)| × |Q(S)| is defined by
(A(S)p)ij = p(A(S)ij), with p(A(S)ij) given by Equa-
tion (2).

Intuitively, each entry (A(S)p)ij in the probabilistic
transition matrix represents the probability that the state
would be the path assignment πj given that the path assign-
ment at the end of the previous time interval was πi. Let v
be a |Q(S)| × 1 column vector representing the probability
distribution on states, with [v]i defined as the ith element of
v, giving the probability that the last route advertisements
correspond to path assignment πi. The probability distri-
bution of states at the next time interval is then given by
(A(S)p)T v where we use AT to denote the transpose of
a matrix A. Under the assumption that the probability of
a node sending a route advertisement is the same in each
time interval, we thus get that the probability distribution of
network states vn after n time intervals is given by vn =
((A(S)p)T )nv0, if v0 is the initial probability distribution
on states, and (A)n denotes the n-fold matrix product of a
matrix A. Finally, we recall that a matrix A of order N ×N
is said to be stochastic if 0 ≤ Aij ≤ 1, i, j = 1, . . . , n and∑N

j=1 Aij = 1, i = 1, . . . , N . A stochastic matrix guaran-
tees that if v is a probability distribution, i.e., 0 ≤ [v]j ≤ 1
for j = 1, . . . , n and

∑N
j=1[v]j = 1, then the vector AT v is

also a probability distribution. It is easy to show that for any
activation probability vector p, the induced matrix A(S)p
is stochastic. Summarizing, the probabilistic behavior of a
BGP configuration can thus be cast as a linear stochastic
system via its probabilistic transition matrix.

Proposition 2.4 (Probabilistic BGP Execution) Let S be
an SPP instance, and p an activation probability vector. We
then have the following:

1. The matrix A(S)p is stochastic.

2. If vn is the probability distribution of path assignments
after n time intervals, then the probability distribution
of path assignments after n + 1 time intervals, vn+1,
is given by vn+1 = A(S)T

pvn.

3. If v0 is the initial probability distribution of path as-
signments then the probability distribution of path as-
signments after n time intervals is vn = (A(S)T

p )nv0.

3 Probability of Convergence

In the deterministic setting, safety of a BGP configura-
tion (c.f. [3]) has been taken to mean that there exist no ac-
tivation sequence which would result in divergence or in-
stability, or conversely that every activation sequence leads
to a stable path assignment. In this section, we consider a
probabilistic version of this notion, where we require that
the probability (over all activation sequences) of the net-
work eventually arriving at a stable path assignment is 1, or
conversely that for any path assignment that is not stable the
probability of the network eventually arriving at such a path
assignment is 0. In Section 3.1, we formalize this intuition.
In Section 3.2, we develop a characterization of probabilis-
tic safety. Using this characterization we can then show that
probabilistic safety is a more liberal condition in that there
can be BGP configurations which would be considered de-
terministically unsafe but are nevertheless probabilistically
safe. In Section 3.3, we present the more general solution
for computing the probability of convergence for any BGP
configuration.

3.1 Probabilistic Safety Definition

For the rest of this section, we fix some SPP instance S,
and use A to denote its transition matrix A(S). By Propo-
sition 2.4, we have that after n time intervals, the probabil-
ity distribution on path assignments is given by the column
vector vn = (AT

p )nv0 where v0 is the initial probability
distribution. The long-term or eventual probability distribu-
tion is the limit vector obtained as n → ∞. The probability
that the network eventually arrives at some path assignment
πi is therefore given by the i’th entry of this column vec-
tor, i.e., limn→∞

[
(AT

p )nv0

]
i
. We consider a configura-

tion to be probabilistically safe if for any path assignment
that is not stable (as defined in Section 2.2) we have that
this probability is equal to 0. We define three variants of
this safety condition; one corresponding to whether both the
initial network state and activation probabilities are known,
the second corresponding to when the initial network state
is known but the activation probabilities can be arbitrary,
and finally when both the initial network state and activa-
tion probabilities can be arbitrary. The last requirement is
applicable to the typical scenario where the network has sta-
bilized previously to some unknown path assignment (or a
probability distribution on them), and a change to the net-
work topology or policy configuration results in routes be-
ing recomputed starting from this potentially arbitrary prior
path assignment.

Definition 3.1 (Probabilistic Safety) Let S be an SPP in-
stance and A its transition matrix.

1. S is safe with respect to an admissible activation prob-
ability vector p and initial probability distribution on



path assignments v0 if for any state πi that is not sta-
ble we have that

lim
n→∞

[
(AT

p )nv0

]
i

= 0 .

2. S is activation independent safe with respect to an ini-
tial probability distribution on path assignments v0 if
for any admissible activation probability vector p, S
is safe with respect to p and v0 .

3. S is initial-state independent safe if for any admissible
activation probability vector p and any initial proba-
bility distribution v0, S is safe with respect to p and
v0.

We next develop necessary and sufficient conditions for
each of these three safety requirements.

3.2 Safety Characterization

Our characterization of safety is obtained by classifying
the path assignments as being stable, transient, or cyclic.
These in turn are defined based on whether they have a non-
zero probability of reaching a stable state. Let S be an SPP
instance, and A its transition matrix. For a given activation
probability vector p, we define the binary relation Rp on
path assignments in Q(S) by πiRpπj iff Apij > 0. Ad-
ditionally, we define the binary relation R on path assign-
ments in Q(S) (that is independent of an activation prob-
ability vector) as πiRπj iff Aij �= ∅, i.e., the transition
matrix entry for going from state πi to πj is non-empty.
Using these relations, we can define stable, transient and
cyclic states with and without respect to a fixed activation
probability vector. In the following definition, we use R+

to denote the transitive closure of a relation R and R∗ to
denote the reflexive transitive closure.

Definition 3.2 Let S = ((V, E),P , V ) be an SPP instance,
and A its transition matrix.

1. A path assignment πi is stable if Aii = 2V −{0}. A path
assignment πi is stable with respect to a probability
activation vector p if Apii = 1.

2. A path assignment πi is transient if there exists a stable
path assignment πj with πiR

+πj . A path assignment
πi is transient with respect to a vector p if there exists
a stable path assignment πj with πiR

+
p πj .

3. A path assignment πi is cyclic if there is no stable path
assignment πj with πiR

∗πj . A path assignment πi is
cyclic with respect to a vector p if there is no stable
path assignment πj with πiR

∗
pπj .

21

0

10 20
120 210

Figure 1. Probabilistically Safe but Determin-
istically Unsafe Configuration

Intuitively, a transient state is one that has a non-zero
probability of reaching a stable state in one or more steps
and a cyclic state is one that cannot reach a stable state.
Since the transitive closure can be computed inductively,
Definition 3.2 yields a straightforward algorithm for deter-
mining stable, cyclic, and transient states. Namely, by start-
ing with the set of stable states and inductively including
states that can reach them (which can be determined by ex-
aming the column entries that are non-zero) we can obtain
the set of all transient states. Any states that are not included
in this set are then cyclic.

The following theorem states the necessary and sufficient
conditions for the three forms of safety.

Theorem 3.3 (Safety Characterization) For any SPP in-
stance S, we have the following:

1. S is safe with respect to a probability vector p and
initial distribution v0 iff there is no state πj such that
πj is cyclic with respect to p and πiR

∗
pπj for some πi

with [v0]i > 0.

2. S is activation independent safe with respect to initial
distribution v0 iff there is no state πj such that πj is
cyclic and πiR

∗πj for some πi with [v0]i > 0.

3. S is initial-state independent safe if there is no cyclic
state.

The essence of Theorem 3.3 is that a configuration is safe
if every reachable path assignment from the initial state of
the network has a non-zero probability of reaching a sta-
ble state. Using this characterization, it is easy to show
that any probabilistically unsafe configuration is also deter-
ministically unsafe. The converse, however, does not hold.
Consider, for example, the “Disagree” network configura-
tion of [3] shown in Figure 1 (in which the permissible
paths are listed above each node in order of preference for
that node). Although this network can exhibit a divergent
sequence (corresponding to the sequence of advertisements
{1, 2}, {1, 2}, . . .), since every path assignment has a non-
zero probability of stepping to a stable path assignment, it



is in fact probabilistically safe. The particular divergent ad-
vertisement sequence has zero measure relative to the set of
all advertisement sequences.

Using the algorithm for determining cyclic states and by
computing the transitive closure, Theorem 3.3 yields an al-
gorithm for determining the three forms of safety that is
polynomial in the size of Q(S); the size of Q(S) can, how-
ever, be exponential in the size of S. As the following theo-
rem shows, it is unlikely that one could obtain more efficient
algorithms.

Theorem 3.4 The decision problems of determining safety,
activation independent safety, and initial-state independent
safety, are NP-hard.

In [3], the notion of a “trap” in an evaluation graph is
defined and it is shown that determining the existence of
a trap is NP-hard. The proof of Theorem 3.4 is based on
showing reductions from this problem to the characterizing
conditions of Theorem 3.3. Interestingly, the existence of a
“trap” was identified in [3] on intuitive grounds as a distinc-
tion between “weak divergence” and “strong divergence.”
Theorem 3.3 together with the reductions can therefore be
seen as a precise delineation and validation of this distinc-
tion.

3.3 Computing Probability of Convergence

As described in Section 3.1, the probability that a BGP
configuration will eventually be in a stable state is given by
the expression

lim
n→∞

∑
πi stable

[
ATnv0

]
i

where v0 is an initial probability vector, so that its compo-
nents are all nonnegative and sum to 1.

The computation of ATn can be performed by express-
ing AT in the form PJP−1, where J is the Jordan form of
AT and the matrix P contains the eigenvectors of AT . The
diagonal entries of J consist of the eigenvalues of AT (or
A) with appropriate multiplicity. Then ATn is computed as
PJnP−1, where Jn is simple to compute due to its special
structure. As n → ∞, Jn converges to a matrix with some
1’s on the main diagonal, and 0’s elsewhere. The number
of 1’s is equal to the sum of the number of stable states and
the number of distinct cycles. If we call this limiting ma-
trix J∞, then the probability of the network ending up in a
stable state is the sum of the row elements corresponding to
the stable states of the vector ATnv0 = PJ∞P−1v0.

4 Expected Convergence Time

In this section, we consider how the transition matrices
corresponding to BGP configurations can be used for com-
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Figure 2. Three Node Full Mesh with Prefix
Withdrawal

puting the expected time to converge. Section 4.1 presents
the general procedure for computing the expected number
of time intervals to converge based on solving a system of
linear equations obtained from the transition matrix. In Sec-
tions 4.2 and 4.3, we consider two families illustrating the
lack of relationship between expected convergence time and
worst case convergence time. Section 4.2 considers a full-
mesh network in which one of the routes is withdrawn for
which we show that expected and worst case convergence
times are similar. In Section 4.3, we present an example
family of network configurations for which the expected
time to converge is better than the worst case convergence
time by O(n2) where n is the size of the network.

4.1 Computing Expected Convergence Time

In this section, we show how the expected waiting
time (number of time intervals) until a BGP configuration
reaches a stable state can be determined exactly by solv-
ing a system of linear equations. The key idea behind the
general method is to consider for every network state, the
expected waiting time to converge after reaching that state.
As the base case, for a stable state i, this quantity is triv-
ially 0. From any other state i, if we move to a state j,
then the time taken to converge is 1 time interval plus the
time taken to converge from state j. The expected waiting
time from state i is then the average of this quantity over all
next states j weighted with the probability of reaching j. In
symbols, letting Wi denote the waiting time until a stable
state is reached starting at state i, and recalling that aij is
the probability that one moves to state j in one time interval
given that one is starting in state i, this is

E(Wi) =
∑

j

aij [1 + E(Wj)] = 1 +
∑

j

aijE(Wj) (3)

for all states i that are not stable. Note that the summation
over j may include i, and does so when there is a positive
probability of the system remaining in state i after one time
interval. If i is a stable state, then naturally E(Wi) = 0.
It can be shown that the solution to E(Wj) is convergent
iff the system is safe with respect to starting in the state
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πj (i.e., a probability distribution on path assignments that
maps state j to 1 and all other states to 0).

4.2 Configuration with Long Expected Conver-
gence Time

We consider the example of a full mesh or clique net-
work where the originating destination withdraws its prefix,
a classical example exhibiting delayed convergence. By us-
ing the general method presented in Section 4.1, we show
that the difference between expected and worst-case con-
vergence time is O(1) in the size of the network. We first
illustrate the application of the procedure on the case where
the network has three nodes and then present the argument
for the general case.

The configuration consisting of a full-mesh network
topology and shortest path routing for the 3-node case is
given in Figure 2. As described in Section 2.2, to model the
withdrawal by the destination node 0, we take the path as-
signment at node 0 to be the empty path ε; the initial state is
taken to consist of the path assignment where each node has
selected the direct path to the destination node 0. The prob-
abilistic transition matrix for the network with two nonzero
nodes, Figure 2, is given in Figure 3, where we use the sym-
bols i and i to denote pi and 1−pi, respectively, for i = 1, 2.
Thus 12 is p1(1 − p2). A blank entry indicates probability
0. Solving the system of equations given by the general
method of Section 4.1 for this matrix yields

E(W1) = [(p1 + p2 − 2p1p2)(p2
1 + 3p1p2 + p2

2)
+ p2

1p
2
2(p1 + p2)]/[p1p2(p1 + p2 − p1p2)2]

with E(W1) denoting the expected waiting time, from the
initial state of 〈10, 20〉. In the special case where p1 =

p2 = p, say, this reduces to E(W1) = 2(5 − 5p + p2)
/[p(2− p)2]. For small values of p, E(W1) has the expan-
sion

E(W1) =
5
2p

− p

8
− p2

8
− · · · , (4)

which converges for all p ∈ (0, 1].
The general n-node case when the probabilities p are

small can be analyzed as follows. If the transition probabil-
ity from one state to another is p, then the expected waiting
time for that transition to occur is 1/p, with no other states
involved. Consequently, if the longest path from the initial
state to any stable or cyclic state is L, then the expected
waiting time is bounded by L/p, or L/(maxi pi) if the pi

are different. Second order effects occur when two different
nodes are activated with the same time interval, but these
occur only on the order O(1/p2), and all three nodes are
activated within one time interval a fraction on the order of
O(1/p3). Consequently they only affect the waiting time to
terms of higher order than O(1/p), that is, constant terms,
terms of order p, p2, . . .. For an n-node clique, we can show
(by induction on n) that the longest path length is O(n2)
while the shortest path length consisting of single-node acti-
vations is Ω(n2). From this, it follows that the leading term
coefficient of 1/p in an expansion similar to Equation (4)
for the n-node case would be Θ(n2) from which it follows
that the difference between the worst and average case is
O(1).

We now consider the general case when the probability
of activations p is large; more specifically, when the proba-
bility of each node not advertising in a given time interval
is small in comparison to the reciprocal of the number of
nodes. We now show that in this case the expected wait-
ing time from the initial state to the final state is linear in
the number of nodes. Under these assumptions, using q
to denote 1 − p, the probability that all n nonzero nodes
will advertise in a given time interval is pn = (1 − q)n =
1−nq+O(q2). The expected waiting time is the reciprocal
of this quantity times the length between advertising inter-
vals. If the latter is T , then the expected waiting time for an
interval in which all the nodes have advertised is

T

(1 − q)n
= T [1 + nq + O(q2)] .

This follows from the property of a geometric distribu-
tion that the mean is the reciprocal of the parameter (prob-
ability of success). When all the nodes advertise, their
path advertisements have lengths that are either 1 greater
than previously, or the empty path. The initial state is
〈10, 20, · · · , n0〉, and thus after n steps in which all nodes
have advertised, all the nodes advertise the empty path. The
expected waiting time to converge is bounded by the sum of
the expected waiting times to go from one interval where all
the nodes advertise to the next such interval. Thus the total



expected waiting time is at most

nT [1 + nq + O(q2)] = T [n + n2q + O(q2)] (5)

provided that q is small compared to 1/n.

4.3 Large Variance between Expected and Worst
Case Convergence Time

In this section, we present a family of examples where
the difference between the expected waiting time and worst
case waiting time is O(n2) where n is the network size.
The configuration for a network with n nonzero nodes is
defined as follows. For node 1, the only valid path is 10.
For node 2, the order of path preference is the order of path
preference is 20, 210, 2310, . . . , 234 · · ·n10, and for node 3
it is 30, 310, 3410, . . . , 34 · · ·n10. For node k with k ≥ 4,
the order is k0, k10, k(k + 1)10, k(k + 1)(k + 2)10, . . . ,
k(k + 1)(k + 2) · · ·n10, k(k + 1)(k + 2) · · ·n2310, k(k +
1)(k+2) · · ·n23410, k(k+1)(k+2) · · ·n234(k−1)10. We
consider the scenario of prefix withdrawal, so that the initial
state is 〈10, 20, · · · , n0〉 and the stable state is 〈ε, · · · , ε〉.

The intuition behind the construction is to allow execu-
tion sequences that are exactly one of the longest ones ob-
tained in the clique example of Section 4.2, e.g., by having
the nodes activate in the order 2, . . . , n, 1, 2, . . . , n, 2, 3, . . . ,
n, 2. The path following the sequence above has n2−2n+3
steps, which leads to a worst case time of O(n2). All states
not obtainable from this sequence are excluded. Thus if the
nodes are activated in other orders, particularly if node 1
is activated before all the others are, then the network will
converge to the stable state much more quickly.

The instance of this general family of configurations for
n = 4 is given in Figure 4. If nodes 2, 3, and 4 are activated
before node 1 is, then the network may take 11 steps to
attain the stable state 〈ε, ε, ε, ε〉, such as in the sequence 2,
3, 4, 1, 2, 3, 4, 2, 3, 4, 2. If node 1 is activated before the
other three are, then the network converges more quickly,
and usually much more quickly. If node 1 is activated first,
then convergence is reached in three more steps no matter
in which order the other three nodes are activated. This
ensures that the average case requires significantly fewer
steps than the worst case. We now detail the more precise
computation of the expected convergence time.

For n = 3, in the case where all of the pi are equal to p,
we can solve the expected waiting time from the initial state
〈10, 20, 30〉 to the stable state 〈ε, ε, ε〉 to be

E(W1) =
10 − 10p + 3p2

p(2 − p)2
=

5
2p

+
p

8
+

p2

8
+ · · · .

The longest path, of length 6, occurs when the nodes are
activated in the order 2, 3, 1, 2, 3, 2 or 3, 2, 1, 2, 3, 2. In
general the average waiting time for a specific node to be
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42310

1

0

10

2

Figure 4. Four-nonzero-node example with
large difference between average and worst
cases.

activated is 1/p, but when there is a choice of two nodes
that may be activated, such as the choice between nodes 2
and 3 at the first step of the longest path, the average waiting
time is 1/(2p). Thus the waiting time for the longest path is
1/(2p) + 5/p = 11/(2p) = 5.5/p. Consequently the aver-
age waiting time, with leading term 2.5/p, is approximately
5/11 = 0.455 of the longest waiting time. associated with
the paths of length 6.

For four nonzero nodes (n = 4), the expected waiting
time from the initial state 〈10, 20, 30, 40〉 to the stable state
〈ε, ε, ε, ε〉 is

E(W1) =
2.628

p
+ 0.235 + 0.190p + 0.143p2 + · · · .

The longest paths, of length 11, are obtained when nodes
2, 3, and 4 are activated in any order, then node 1, and then
nodes 2, 3, 4, 2, 3, 4, 2. The waiting time for the worst case
is thus 1/(3p)+1/(2p)+9/p = 9.833/p. Thus the expected
waiting time is approximately 0.267 times the longest time.
This smaller ratio (compared to 0.455 for n = 3) indicates
that the ratio of the average to longest times is decreasing
markedly with n.

More generally, it can be shown that the difference be-
tween expected convergence time and the longest time is
quadratic in n, the number of nodes. Even if we assume the
worst case longest path length whenever node 1 is not acti-
vated first, which occurs with probability 1 − 1/p when all
the node activation probabilities are equal, that would give
an expected waiting time of (1/p)(n+1)+(1−1/p)(n2−
2n+3), and the difference between this and the longest path
length is (n2 − 3n + 2)/p.



5 Probability Distribution of Convergence
Times

In this section, we provide a general method for obtain-
ing the probability distribution on the length of time that
any given BGP configuration would take to converge. More
specifically, given the probabilities of activation of different
BGP speakers within a fixed time interval, we show how
to compute the probability distribution on the number of
time intervals that will be taken to converge. This computa-
tion takes into consideration time intervals during which no
nodes or multiple nodes are activated.

The general procedure is obtained by considering the
probability of the network being in a stable state after a cer-
tain number of time intervals. Specifically, let Pn(i) be the
probability that the network is in state i after the n’th time
interval. Then the probability that the network will con-
verge within L time intervals, denoted P≤L, is given by
summing up PL(i) for all stable states i. The probability
that the network will take exactly L time intervals to con-
verge, denoted P=L, can then be computed using P≤L by
the difference P≤L − P≤L−1. Using the values for Pn(i)
given by Proposition 2.4, we therefore obtain the follow-
ing theorem, where we use I to denote the identity matrix
whose diagonal entries are 1 and all other entries 0.

Theorem 5.1 Let S be an SPP instance, p be an activation
probability vector, and A be its induced probabilistic tran-
sition matrix. If v0 is the initial probability distribution of
path assignments, the probability distribution of converg-
ing within n time intervals and probability distribution of
converging after exactly n time intervals are given by the
following equations:

P≤L =
∑

πi stable
[
ATLv0

]
i

P=L =
∑

πi stable
[
(AT − I)AT (L−1)v0

]
i

.

6 Simulation Results

The simulation studies were conducted using
SSFNet [1]. SSFNet is a discrete-event based simula-
tion package in which simulation is performed at the IP
packet level. Network models can be specified using a
configuration language DML, and SSFNet supports the
emulation of multiple network protocols at each router
including BGP. The BGP implementation is compliant with
the BGP-4 specification in RFC 1771 [11], while allowing
configuration of certain network operation parameters. In
our experiments, each SPP instance ((V, E),P , Λ) consid-
ered was mapped to a network model (in DML) by using an
AS-level topology corresponding to the graph (V, E) and
taking each AS to consist of a single router. This eliminates
the effects of internal routing and I-BGP that have not
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Figure 5. Variation of Average Convergence
Time with Network Size

been considered in our model. The AS corresponding
to node 0 of the SPP instance was taken to announce or
withdraw a single destination prefix which is the only
destination prefix processed in the simulations. Router
workload is emulated in the experiments by imposing a
synthetic CPU processing delay after the processing of
each BGP message — for the results described below, this
delay was set to be randomly selected between 0.01 and
1 second. Advertisements are rate-limited by an MRAI
timer which is jittered as follows. For an MRAI setting of
t seconds, after each expiration of the timer, the next value
of the timer is set to expire after a value chosen randomly
in the interval [0.75, 1] times t. The randomness in the
CPU delay together with the randomness due to the MRAI
jitter allow for reorderings of BGP message exchanges
in the simulations. Our simulation framework is largely
inspired by the methodology of [4]; additionally, we have
included MRAI jitter. In the experiments described below,
withdrawal advertisements were not rate limited and sender
side loop detection was not used, though these choices do
not seem to qualitatively affect the results.

6.1 Probabilistic Safety

The aim of this class of experiments was to examine how
well the analytical notion of “probabilistic safety” corre-
sponds to lack of divergence in practice. To this end, we
define a family Dn of BGP configurations (for any natural
number n) with the property that each configuration Dn is
probabilistically safe (i.e., has probability of convergence
equal to 1) but is deterministically unsafe (i.e, there exists a
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message exchange sequence that would lead to divergence).
The BGP configurationDn consists of 2n+1 network nodes
labeled {0, 1, . . . , 2n}, with links between nodes i and i+1
for every i, links between nodes i and i + 2 for every i, and
links between nodes i and i + 3 for every odd i. The poli-
cies at each node are such that: (1) at every node that is an
odd i, a path including the node i + 1 is preferred over a
path that does not include it, (2) for any even i, a path in-
cluding the node i− 1 is preferred over a path that does not
include it, and (3) at every node i, any path that includes
both j and j + 1, for some odd j with j, j + 1 < i, is
not permitted. Each of these configurations was simulated
for MRAI values ranging from 0 to 30 seconds, in incre-
ments of 5 seconds. Random seeds were used to generate
the MRAI jitter and CPU delay values, and for each fixed
value of MRAI timer or CPU delay, the experiment was run
with 30 random seeds to generate the alternate value. This
resulted in a total of 6300 runs (900 runs for each MRAI
value and 7 MRAI values) for each network Dn (for a fixed
n). The value of n itself was varied from 5 to 20 (in in-
crements of 1) resulting in a total of 100, 800 runs. Each
of these runs resulted in a stable state. Thus they match
exactly with the model-based prediction of the probability
of convergence being 1 and seem to confirm that divergent
message sequences in probabilistically safe configurations
are pathological and never occur in practice.

6.2 Expected Convergence Time

The aim of this class of experiments was to compare the
analytical results on expected convergence time obtained on
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the basis of our model with simulation results — the points
of similarity or difference would then identify the network
operating conditions under which our mathematical model
provides a good approximation. For a particular BGP con-
figuration, we have shown that we can analytically derive
exact expressions for its expected convergence time. How-
ever, unlike the results on probability safety, these expres-
sions are functions of the activation probability parameters
which cannot be explicitly set in the simulation. Quanti-
tatively comparing these would therefore require obtaining
exact estimates of the activation probability values that cor-
respond to the particular operating conditions. Therefore,
the comparison made in these experiments was the qualita-
tive prediction of the variation of convergence time with cer-
tain parameters, such as network size and the MRAI timer
value. These results are therefore less sensitive to the exact
estimates of the activation probabilities.

We consider the example of a clique with prefix with-
drawal. With advertisement rates limited by the MRAI
timer, the model-based analytical prediction for expected
convergence time is given by T (n + n2q + O(q2)) (Equa-
tion (5), proved in Section 4.2), where T is the unit time-
interval taken for advertisements, q is the probability that a
node would not advertise in the interval, and n is the num-
ber of nodes other than the origin node from which the des-
tination prefix is withdrawn. If the MRAI timer value is m
and jitter is in the interval [0.75, 1], then the time interval to
take for T in which one is assured that a node cannot ad-
vertise more than once is T = 0.75m. Since q is relatively



small, the model-based prediction of variation of conver-
gence time is O(nm) where n is the number of nodes and
m is the MRAI value, i.e., linear in the number of nodes and
MRAI timer value and we examine this variation through
simulation.

Regarding the linear growth with network size, we ran
the simulation for clique sizes ranging from 5 to 30 (this is
the number of nodes including the destination AS). For each
clique size, average convergence time was computed over
900 runs obtained from a combination of 30 random seeds
for CPU delay and 30 random seeds for MRAI jitter, with
MRAI value set to 30 seconds. Figure 5 shows the average
convergence time obtained in this manner. The data values
fit well with a linear variation and the best linear fit obtained
through a least squares method is shown in Figure 5 as well.
A measure of this fit is the R squared correlation coefficient
which in general would be between 0 and 1, with a value
closer to 1 indicating a closer correlation. This correlation
coefficient for the linear fit given in Figure 5 is 0.998604.

With respect to the linear growth with MRAI value, we
ran the simulation for a fixed size clique and MRAI val-
ues ranging from 0 to 30 seconds. For each MRAI value,
average convergence time was computed over 900 runs ob-
tained from a combination of 30 seeds for CPU delay and
30 seeds for MRAI jitter. Figure 6 shows these results for
a clique size of 15 nodes which indicates that convergence
time initially decreases with increasing MRAI values until
an MRAI value of about 9 seconds after which it increases.
The fact that the growth beyond 9 seconds is linear is shown
more clearly in Figure 7 where the plot primarily focuses on
this latter increasing section of Figure 6. The best linear fit
that is also plotted in Figure 7 has an R squared correlation
coefficient of 0.999426 which indicates that for MRAI val-
ues of more than 9 seconds, the simulation results match the
analytical linear prediction very well. Similar linear growth
beyond a certain MRAI value is obtained for other clique
sizes as well, and is also consistent with simulation experi-
ments previously reported in [4, 10] (where MRAI timers
were not jittered). The lack of consistency for lower MRAI
values, on the other hand, can be traced to the fact that when
MRAI values are low, at each router, the queue of route ad-
vertisements received from its peers is not fully processed
when the route advertisement at the expiration of the MRAI
timer is sent. This results in advertisements of routes that
are based on earlier advertisements and that therefore do
not correspond to the best path based on the latest peer ad-
vertisements. Since our execution model does not explic-
itly include queues, any route advertisements in our model
are assumed to be based on the latest peer advertisements.
When queues are not fully processed at the instants of route
advertisements, this may therefore result in state transitions
that would not be present in our model, which therefore re-
sults in a mismatch. Queuing therefore seems to have ef-

fects that are not captured within our model; however, it
should be noted that the default MRAI value in commercial
implementations is 30 seconds and the simulations would
therefore seem to suggest that in network operating condi-
tions with this default MRAI value, queuing effects are not
significant.

7 Conclusion

In this paper, we have presented a mathematical model of
BGP execution that permits analysis of its probabilistic or
aggregate behavior. Using the model, we are able to iden-
tify the notion of probabilistic safety as having probabil-
ity of convergence be 1 which is a more permissive notion
than requiring that all message exchange sequences lead to
convergence. Probabilistic safety allows us to distinguish
pathological oscillating message exchange sequences from
those that can actually occur in practice. The model is sim-
ple enough to permit quantitative analysis — as examples,
we have given general procedures for computing probability
of convergence, expected time to converge, and probability
distribution on times to converge. At the same time, results
from simulation seem to suggest that the model provides a
useful approximation of the complexities of BGP behavior,
especially when the RIB-IN buffer queues have been typi-
cally completely processed when route advertisements are
sent.

As opposed to a model from which we can only obtain
decision procedures (i.e., a yes or no answer), the quanti-
tative nature of the analysis supported by the model would
make it well-suited to designing procedures for optimizing
BGP configurations with respect to requirements on proba-
bility of convergence or time to converge. At the same time,
we consider the work presented here an initial basis for ex-
ploring further questions not addressed in this paper. Firstly,
the algorithmic procedures presented in this paper are poly-
nomial in the size of the matrices corresponding to BGP
configurations which could be exponential in the size of the
networks. By Theorem 3.4 and the connection between ex-
pected convergence time and probabilistic safety (stated at
the end of Section 4.1), it follows that the existence of more
efficient procedures for exact solutions is unlikely. How-
ever, one could consider obtaining more efficient algorithms
for approximation versions of these problems. Secondly, we
have not addressed the question of obtaining exact estimates
for the probability parameters in our model. Many of our re-
sults such as the characterization of probabilistic safety and
qualitative understanding of the variation of convergence
time do not depend on the exact values of these probabil-
ity parameters. However, quantitative estimates of proba-
bility of convergence or expected convergence time for a
specific network configuration are inherently dependent on
these probabilities. As such, general principles for obtain-



ing the probability parameters on the basis of measured net-
work delays and MRAI timer values would be valuable. Fi-
nally, extending this work to Interior-BGP and quantifying
the impact of queuing effects on convergence are further di-
rections to explore.
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