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Abstract

The recent discovery of instability caused by the inter-
action of local routing policies of multiple ASes has led to
extensive research on the subject. However, previous studies
analyze stability under a specific route selection algorithm.
In this paper, instead of studying a specific route selection
algorithm, we study a general class of route selection algo-
rithms which we call rational route selection algorithms. We
present a sufficient condition to guarantee routing conver-
gence in a heterogeneous network where each AS runs any
rational route selection algorithm. Applying our general re-
sults, we study the potential instability of a network where
the preference of an AS depends on not only its egress routes
to the destinations but also its inbound traffic patterns (i.e.,
the distribution of incoming traffic from its neighbors). We
show that there exist networks which will have persistent
route oscillations even when the ASes strictly follow the
constraints imposed by business considerations, and adopt
any rational route selection algorithms.

1. Introduction

In the Internet, each autonomous system (AS) adopts its
own local routing policies to choose interdomain routes to
achieve objectives such as cost reduction, revenue maxi-
mization, latency reduction, and congestion avoidance. The
discovery (e.g., [42]) that the interaction of local routing
policies (called local policies for short in this paper) can
lead to instability has led to extensive research on the sub-
ject lately. By instability in this paper, we mean persis-
tent route oscillations even when the network topology is
stable. In particular, researchers [17, 21, 22, 26, 38] study
the stability of path-vector, policy-based interdomain rout-
ing, and identify conditions to avoid instability. Gao and
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Rexford [16, 17] prove that the constraints imposed on lo-
cal policies by business considerations can lead to stabil-
ity. Although the preceding stability results are surprisingly
pleasant and elegant, practice poses further challenges in
analyzing interdomain routing stability.

First, the previous studies focus on the stability of a ho-
mogeneous network where each AS runs the same specific
interdomain route selection algorithm (i.e., the BGP-based
greedy route selection algorithm such as SPVP [22], where
an AS always chooses the best currently available routes).
However, with increasing usage of BGP route selection for
interdomain traffic engineering, route selection algorithms
with more sophisticated strategies are likely to be designed
and deployed in the Internet. For instance, Dakdouk et
al. [4] show an example network where one of the ASes
has a route selection strategy which performs strictly better
than the greedy strategy. Therefore, given the potential ad-
vantage of adopting route selection algorithms that do not
use the greedy strategy, different ASes are likely to adopt
different route selection algorithms that are suitable for their
own objectives. Thus it is necessary to analyze the stability
of a heterogeneous network where ASes may adopt route
selection algorithms that do not use the greedy strategy.

Second, the previous studies focus on local policies
which rank only the egress routes; that is, they assume that
the local ranking of egress routes at each AS is independent
of the inbound traffic pattern of the AS. This independence
is justified when the inbound traffic of an AS is relatively
constant. However, in practice, the local policies of ASes
may involve both the egress routes and the pattern of in-
bound traffic. If this happens, we say that the local policy of
the AS depends on the inbound traffic pattern, or inbound
traffic for short. We also say that the local policy of the
AS is inbound-traffic-dependent, or inbound-dependent for
short. Later in Section 5, we will show an example network
where one of the ASes ranks egress routes depending on
the pattern of inbound traffic. Such inbound-dependent lo-
cal policies can be implemented automatically with a traffic
engineering algorithm based on an estimated traffic demand
matrix. In the last few years, several traffic-demand-matrix-
based traffic engineering algorithms have been proposed
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(e.g., [3, 19]). Although such route selection algorithms
have been shown to be effective, the evaluations often as-
sume that the inbound traffic is constant (e.g., the route
selection of the AS does not change the inbound traffic),
whereas the inbound traffic is likely to change with the cho-
sen egress routes, introducing unexpected interaction. Thus
it is necessary to analyze the stability of route selection al-
gorithms implementing local policies that take into account
inbound traffic patterns.

In this paper, we analyze the stability of interdomain
routing in a heterogeneous network where ASes run any
one of a class of route selection algorithms. Informally, the
class of algorithms we study are those that, asymptotically,
for the given network, will not choose routes that are known
to be inferior to other available routes. Since we are model-
ing the route selection behaviors of self-optimizing ASes, it
will be “unjustified” or “irrational” for a self-optimizing AS
to eventually choose an inferior route when there are other
available, better routes; thus we call the class of algorithms
we study rational route selection algorithms.

There are several advantages in conducting stability
analysis based on the general notion of rational route selec-
tion algorithms. First, it allows us to establish more general
positive results: 1) it allows us to prove the stability of a het-
erogeneous network where different ASes can run different
route selection algorithms, as long as the algorithm chosen
by each AS is rational for the given network; 2) since the
notion of a rational route selection algorithm is defined by
its asymptotic behavior, if variations to a route selection al-
gorithm do not change its asymptotic behavior (e.g., non-
persistent experimentation), the route selection algorithm is
still rational, and thus the stability result still holds. Second,
it allows us to establish more general negative results; for
example, if we show that a network is unstable under any
rational route selection algorithms, it is more general than
to show that a network is unstable under a specific route
selection algorithm.

In particular, we derive a sufficient condition to guaran-
tee routing convergence under the general model that the
ASes are running heterogeneous rational route selection al-
gorithms. This condition applies to any network where the
route selection algorithms of the ASes are rational route se-
lection algorithms.

Applying our general results, we study the potential in-
stability of inbound-dependent route selection. We first
show that the common route selection algorithms of simply
choosing the best routes according to the traffic demand ma-
trix of the preceding period could lead to instability, when
the route selection of an AS can change its inbound traf-
fic pattern. This instability happens even when all con-
straints on interdomain routing imposed by business con-
siderations [17] are satisfied, and just a single AS is using
such an algorithm. We say that such instability is caused by
traffic-route mis-association, and it is an example of insta-
bility caused by route selection algorithms.

Although there is a simple rational route selection algo-
rithm to handle the preceding scenario, we also show that
there exist networks which can have persistent route os-
cillations even when the local policy of each AS follows
the constraints imposed by business considerations, and can
adopt any one of the rational route selection algorithms.
This result clearly demonstrates the intrinsic challenges of
inbound-dependent route selection for interdomain routing.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss related work. In Section 3, we define the
class of rational route selection algorithms. In Section 4, we
present a sufficient condition to guarantee convergence of a
network running rational route selection algorithms. In Sec-
tion 5, we show that the traffic-demand-matrix-based route
selection algorithms can lead to routing instability. In Sec-
tion 6, we show an example network which is unstable un-
der any rational route selection algorithms. Our conclusion
and future work are in Section 7.

2. Related Work

There is a large body of literature on interdomain route
selection. Researchers have conducted extensive evalua-
tions (e.g., [5, 10, 20, 29, 30, 42]) and theoretical analysis
(e.g., [17, 21, 22, 25, 26, 38]) on the stability of BGP route
selection. In particular, Griffin et al. [22] show that “pol-
icy disputes” can cause persistent route oscillations. Grif-
fin and Wilfong [23] then propose a protocol called SPVP3
that can detect oscillations caused by policy dispute at run
time using “path history”. Gao and Rexford [16,17] observe
that, if every AS considers each of its neighbors as either
a customer, a provider, or a peer, and obeys certain local
constraints on preference and export policies, then BGP is
guaranteed to converge. Generalizing the above commer-
cial relationships of ISPs to a class-based system, Jaggard
and Ramachandran [25] show that a global constraint that
guarantees convergence can be enforced by a distributed al-
gorithm. Mao et al. [34] also describe a mechanism to damp
route oscillations. A major difference between our study
and the preceding studies is that we analyze the stability
of interdomain routing in a heterogeneous network where
ASes run any rational route selection algorithms, instead of
a specific algorithm (i.e., the greedy route selection algo-
rithm). Also, we study the dependency of route selection
on inbound traffic, an important factor which has not been
addressed before.

In order to investigate the existence and nonexistence
of stable route selection for a heterogeneous network run-
ning rational route selection algorithms, we adopt a gen-
eral, rational, learning model. This model is motivated by
general game-theoretical, rational algorithms (e.g., adaptive
and sophisticated learning algorithms [35]). In particular,
our model is inspired by the adaptive learning model of Mil-
grom and Roberts [35], and the reasonable learning model
of Friedman and Shenker [13–15].



The interaction of interdomain routing and inbound traf-
fic starts to receive some attention lately [18, 43]. How-
ever, the focus of previous studies is on prepending. In [43],
Wang et al. characterize the stability of inbound-dependent
route selection. However, their study focuses on prepend-
ing and their specific algorithm. Unlike [43], we focus on
route selection, since we feel that the effects of prepending
cannot be guaranteed since an AS can choose to ignore the
effects of prepending.

The study on traffic engineering has traditionally been
focused on intra-domain (for a good survey, please see [11,
12]). There is an increasing interest in tuning BGP attributes
for interdomain traffic engineering [5, 37]. However, most
of the previous work focuses on egress route selection for
either a single AS (e.g., [3,6,19]), or between two neighbor-
ing ASes. In particular, researchers have conducted exten-
sive theoretical analysis (e.g., [27]) and experimental eval-
uations (e.g., [40, 41]) of hot-potato routing, which is a
scheme of exit route selection between two ASes. Recently,
Wang et al. [24] study general interdomain egress traffic
engineering and identify sufficient conditions for conver-
gence; however, it still focuses only on the greedy route
selection algorithm, and considers egress routes only.

Another line of related research is the exten-
sions/alternatives to BGP (e.g., the mechanism-design
approach by Feigenbaum et al. [7–9], the negotiation
protocol by Mahajan et al. [31–33], the BGP pricing
approach by Afergan and Wroclawski [1], and the Hybrid
Link-state Path-vector (HLP) approach of Subramanian
et al. [39]). The objective of our study is to investigate
the intrinsic instability of interdomain routing so that the
extensions can guarantee stability under all scenarios.

3. General Rational Route Selection Algo-
rithms

Previous studies on the stability of interdomain rout-
ing focus on one specific interdomain route selection algo-
rithm — the greedy route selection algorithm. However,
BGP route selection has increasingly been used by ASes to
achieve a diverse set of interdomain traffic engineering ob-
jectives. For ASes with certain objectives, the greedy route
selection algorithm is no longer the best choice. Figure 1
(in the same spirit as the one in Dakdouk et al. [4]) shows
such an example, where A has a route selection strategy that
performs strictly better than the greedy strategy. In more
detail, A and B’s traffic engineering objectives require joint
ranking of routes to two destinations D1 and D2. The rank-
ing tables are shown in the two boxes. Suppose both A
and B start with empty routes, B uses the greedy strategy,
and A makes announcement first. Under the greedy strat-
egy, A will select and announce (AD1, AG1G2D2). This
will lead B to select and announce (BAD1, BFD2), and
the network becomes stable. However, if A selects and an-
nounces inferior routes (AE1D1, AG1G2D2) to B, B will

Provider−to−customer

Peer−to−peer

(AE1D1 , AG1G2D2)

A B

G2

H2

H1

G1

F

D1

E2E1

(AD1

(AE2D1

, AG1G2D2) (BH1H2D1 , BD2)
, BFD2), ABD2)

D2

(BAD1

Figure 1. Illustration of a non-greedy route se-
lection strategy.

select and announce (BH1H2D1, BD2) to A. This enables
A to select the highest ranked routes (AE2D1, ABD2) as
its stable route selection, making this route selection strat-
egy better for A than the greedy strategy. Thus, it is im-
portant to analyze the stability of a heterogeneous network
where different ASes may run different route selection al-
gorithms, not a homogeneous network where all ASes run
a single, specific algorithm, e.g., the greedy route selection
algorithm.

Specifically, in this paper, we study a class of route selec-
tion algorithms we call rational route selection algorithms.
Intuitively, a rational route selection algorithm is one which,
asymptotically, will not choose routes that are known to be
inferior to some other available routes. The concept of ra-
tional route selection algorithms is motivated by previous
work on adaptive learning [35] and learning on the Inter-
net [14]. The models used in the previous game theoreti-
cal studies are normal form games. However, interdomain
route selection is more of an extensive form game than a
normal form game, since an intrinsic characteristic of in-
terdomain route selection is that the available routes of an
AS depend on those exported by its neighbors. In this paper,
we shall explicitly model this dependency. In the sequel, we
shall present the network model and formalize our intuitive
notion of rational route selection algorithms and explore the
implications.

3.1. Network Model

The network topology is represented by a simple, undi-
rected graph G = (V,E), where V = {1, . . . , N} is the set
of ASes and E is the set of interdomain links.

A path in G is either the empty path, denoted by ε, or
a sequence of ASes (vk, vk−1, . . . , v1, v0), where k ≥ 0 is
the length of the path, such that (vi, vi−1) ∈ E for i =
k, k − 1, . . . , 1. Note that if k = 0, then (v0) represents
the trivial path from v0 to itself. Each nonempty path P =
(vk, vk−1, . . . , v1, v0) has a direction from vk to v0. If P
and Q are two nonempty paths such that the first AS in Q
is the same as the last AS in P , then PQ denotes the path
formed by the concatenation of these two paths. We extend
this with the convention that εP = Pε = P for any path P .

We denote by R the set of all paths in G. For each i ∈ V ,



we denote by Ri→ the set of paths originating from i, and by
R→i the set of paths terminating at i. Also, for any i, j ∈ V ,
Ri→j = Ri→ ∩ R→j denotes the set of paths from i to j.

Suppose i and j are two neighboring ASes. As a path
P is exported from j and imported into i, it undergoes two
transformations. First, P1 = export(i, j, P ) represents the
application of export policies of j to P , which includes pos-
sibly prepending j multiple times to P or filtering out P
altogether (P1 = ε). Second, P2 = import(i, j, P1) repre-
sents the application of import policies of i to P1. In partic-
ular, import policies at i will filter out any path that contains
i itself. The collective effects of these transformations can
be represented by the peering transformation, pt(i, j, P ),
defined as

pt(i, j, P ) =
{

import(i, j, export(i, j, P )) if (i, j) ∈ E,
ε otherwise.

The peering transformation represents the import/export
policies of all ASes in the network. Note that in the above
definition, we extend the domain of pt to all pairs of ASes
by setting pt(i, j, P ) = ε if i and j are not neighbors.

Each AS i ∈ V has a set Di ⊆ V of destinations, and
attempts to establish a path to each destination j ∈ Di. A
network route selection is a function r that maps each pair
of ASes i ∈ V and j ∈ Di to a path r(i, j) ∈ Ri→j . We
interpret r(i, j) = ε to mean that i is not assigned a path
to j. We denote by R the set of all possible network route
selections. When we restrict our attention to the route se-
lection of AS i alone, we shall refer to the restriction of r
on i and Di as the route profile for AS i, denoted by ri. We
denote by Ri the set of all possible route profiles for AS
i. Note that in the above definition, we do not require the
routes in a network route selection to be consistent; that is,
if ri(k) = (i, j)P , it is not necessary that rj(k) = P .

The above definitions lead to useful equivalent repre-
sentations of network route selections and route profiles.
First, a network route selection r can be represented as
r = (ri, r−i), where r−i = (rj)j �=i denotes the combined
route profiles of all ASes except i. The route profile of AS
j �= i in r−i is denoted by (r−i)j . We denote by R−i the
set of all possible combined route profiles of all ASes ex-
cept i; that is, R−i = {r−i|(r−i)j ∈ Rj ,∀j �= i}. Second,
network route selections and (combined) route profiles can
be treated as sets of paths. Specifically, a network route se-
lection r, a route profile ri and a combined route profile r−i

are equivalent to the sets of paths {r(i, j)|i ∈ V, j ∈ Di},
{ri(j)|j ∈ Di}, and {(r−i)j(k)|k ∈ Dj , j �= i}, respec-
tively. This equivalent representation is particularly conve-
nient in some operators defined on sets of paths. For exam-
ple, we can simply use r−i as an argument to such an opera-
tor, where actually the argument is {(r−i)j(k)|k ∈ Dj , j �=
i}.

An intrinsic characteristic of path vector protocols such
as BGP is that there are dependencies among route selec-
tions of ASes. Specifically, the route profiles available to

i depend on the route advertisements it receives from its
neighbors, which in turn depend on route selections of these
neighbors. To capture this dependency, we define two oper-
ators Ci and Ai for each AS i as follows. For a set of paths
P ⊆ R, let

Ci(P) = {(i, j) pt(i, j, P )|P ∈ P ∩ Rj→} (1)

Ai(P) = {ri ∈ Ri|ri(k) ∈ Ci(P) ∪ {ε},∀k ∈ Di}(2)

Intuitively, if P is the set of routes exported by i’s neigh-
bors, then Ci(P) is the set of routes available to i in its
routing cache, and Ai(P) is the set of route profiles that i
can possibly choose from this routing cache. Note that AS i
can always choose the empty path to any k ∈ Di regardless
of Ci(P).

The route selection objective of AS i (i.e., its local
preference) is represented by a utility function ui(ri, r−i),
which evaluates the payoff of the current network route se-
lection r for i. Note that since we allow the utility of i to
depend on not only i’s route, but also all other ASes’ routes,
it captures inbound-dependent route selection.

3.2. Algorithm Model

As is mentioned at the beginning of this section, we want
to analyze the stability of a heterogeneous network for a
wide range of potential route selection algorithms. The only
condition we impose on a route selection algorithm is that,
asymptotically, it will not choose routes that are known to
be inferior to some other available routes. Since we are
modeling self-optimizing ASes, we feel that this is a very
generic characterization of such ASes. To capture such
generic behaviors, we avoid any detailed specification of
how the ASes actually select route profiles. Instead, we fo-
cus on the sequence of network route selections over time,
and define the class of algorithms we consider by identify-
ing the general properties of the sequences generated by the
route selection algorithms.

We assume that there is a set of times T = {0, 1, 2, . . .}
at which one or more ASes in the network change their route
profiles. The elements of T should be viewed as the indices
of the sequence of physical times at which these changes
take place. At time t, the selected route profile of AS i is
ri[t], and the network route selection is r[t] = (ri[t])i∈V .
The sequence of network route selections is, therefore,
{r[t]}∞t=0.

Given a set H ⊆ R of network route selections, we de-
fine the projection of H onto Ri as

Hi = {ri ∈ Ri|r ∈ H}. (3)

Accordingly, we define the product set H−i as

H−i = {r−i ∈ R−i|(r−i)j ∈ Hj ,∀j �= i}. (4)

The set H−i represents all possible combined route profiles
of all ASes except i, where AS j’s route profile is drawn



from Hj for all j �= i. Also, let

Ai(H−i) = ∪
r−i∈H−i

Ai(r−i). (5)

Recall that in the above definition, Ai(r−i) actually means
Ai({(r−i)j(k)|k ∈ Dj , j �= i}).

In order to get some intuition about the definition of
rational route selection algorithms, suppose that AS i has
observed a history H of network route selections. If this
history is long enough for AS i to believe that it has ob-
served all possible route profiles that will be used by each
other AS in the future, AS i will expect that each other AS
j will select route profiles in Hj . It is reasonable, there-
fore, for i to believe that the combined route profiles of
the other ASes will belong to the set H−i, hence that the
route profiles possibly available to it will belong to the set
Ai(H−i). However, not all possibly available route profiles
in Ai(H−i) are worth considering. If there exist two route
profiles ri, r

′
i ∈ Ai(H−i), such that the following two con-

ditions hold:

C1. whenever ri is available, r′i is also available;

C2. choosing r′i always yields strictly higher payoff than
ri,

then it would be “unjustified” or “irrational” for i to choose
ri. This is because by C1, r′i can always be chosen instead
of ri; and by C2, choosing r′i always yields strictly higher
payoff than choosing ri. In this case, ri is said to be over-
whelmed by r′i with respect to H , and is called an over-
whelmed route profile. A route profile ri ∈ Ai(H−i) that
is not overwhelmed by any other r′i ∈ Ai(H−i) with re-
spect to H is called an unoverwhelmed route profile. If we
use Ui(H) to denote the set of unoverwhelmed route pro-
files of AS i with respect to H , then the definition of Ui(H)
requires taking negations of the above two conditions. For-
mally, we define the following operator U : 2R 	→ 2R:

Definition 1 Given H ⊆ R, let

Ui(H) = {ri ∈ Ai(H−i)|∀r′i ∈ Ai(H−i), P1 ∨ P2,
where

(P1) ∃r−i ∈ H−i, such that
ri ∈ Ai(r−i), r′i /∈ Ai(r−i),

(P2) ∃r−i, r
′
−i ∈ H−i, such that

ri ∈ Ai(r−i), r′i ∈ Ai(r′−i),
ui(ri, r−i) ≥ ui(r′i, r

′
−i)},

U(H) = {r ∈ R|ri ∈ Ui(H)}.
The two predicates P1 and P2 in Definition 1 are negations
of conditions C1 and C2, respectively. If AS i believes that
other ASes will select route profiles in H−i, then it would
be “irrational” for AS i to choose any route profile not in
Ui(H), since every such route profile is guaranteed to be
overwhelmed by some other route profile in Ui(H). Ui(H)
thus formalizes our notion of the set of unoverwhelmed

route profiles for AS i when each other AS j is limited to
route profiles in Hj .

With the definition of unoverwhelmed route profiles, we
can now formalize our intuitive notion of “rational route se-
lection” as such that, asymptotically, will not choose over-
whelmed route profiles. Formally,

Definition 2 {ri[t]|t ∈ T} is consistent with rational route
selection if, for all t′, there exists t′′ > t′ such that for all
t > t′′, ri[t] ∈ Ui({r[s]|t′ ≤ s < t}). {r[t]|t ∈ T} is
consistent with rational route selection if each {ri[t]|t ∈ T}
has this property.

Remark 1 The sequence {r[t]|t ∈ T} is determined by
many factors, and thus whether a route selection algorithm
used by an AS is rational or not also depends on these fac-
tors, which include, but are not limited to, network topology,
local policies of ASes in the network, and route selection al-
gorithms used by other ASes. This allows more algorithms
to be classified as rational. For example, we will show later
that the BGP-based greedy route selection algorithm is ra-
tional in a particular type of networks. Also note that there
are no requirements on the route selection behaviors of the
ASes for the finite period of time from t′ to t′′ in Definition 2.
This allows for an AS to use non-greedy strategies such as
the one discussed for the example in Figure 1.

3.3. Rational Route Selection Algorithms

The preceding definition of rational route selection is
generic and does not specify how ASes actually select route
profiles. Thus, it allows both centralized and distributed im-
plementations. An example centralized implementation can
be as follows. Each AS sends its utility function (policies)
to a trusted third party. The third party then applies the op-
erator U to compute for each AS a routing schedule (namely
what route each AS should adopt at what time).1

The above implementation requires complete informa-
tion, due to its generality. As we limit the generality, there
can be efficient implementations without requiring com-
plete information, in a distributed setting. In particular, we
will analyze the standard BGP route selection protocol as
it is used in interdomain route selection, and show that it
is a distributed rational route selection algorithm. By the
standard BGP route selection protocol, we mean essentially
the simple path vector protocol (SPVP) as defined in Fig. 5
of [22], extended to the case of joint multiple-destination
route selection, when some mild conditions are satisfied.
We will show that the asymptotic best-response nature of
BGP makes it a rational route selection algorithm, when the
ranking of egress routes of an AS depends on the its own
egress routes only.

Specifically, we have the following result:

1This approach can be made possible by the availability of a public
database publishing AS routing policies. The ASes should be semi-honest
in that they do not manipulate their policies when reporting their policies.



Theorem 1 The BGP protocol is consistent with rational
route selection, if the following conditions are satisfied:

A1. BGP update messages between neighboring ASes are
delivered reliably in FIFO order, and have bounded
delay;

A2. Each AS sends out BGP update messages in bounded
time after it updates its route profile;

A3. Each BGP update message is processed immediately.

Proof: Let the sequence of network route selections be
{r[t]}∞t=0.

Consider an arbitrary AS i. Let Ni be the set of neigh-
bors of i. For any j ∈ Ni, let rj [τ i

j(t)] be the latest route
profile of j such that an update message has been sent to i
with this route profile. Thus Ci(rj [τ i

j(t)]) is the set of paths
in i’s routing cache learned from j at time t. The set of route
profiles available to i is therefore Ai({rj [τ i

j(t)]|j ∈ Ni}).
Assumptions A1 and A2 imply that there exists td such that
at any time t, for any neighbor j of i, τ i

j(t) ≥ t − td.
Although i may not know r−i[t], the payoff ui(ri, r−i) is

only a function of ri. (Recall that we consider only egress
route selection in this case.) The BGP protocol, together
with Assumption A3, implies that at any time t

ri[t] = arg max
ri∈Ai({rj [τ i

j (t)]|j∈Ni})
ui(ri, r−i[t]). (6)

We shall prove the theorem by showing that t′′ = t′ + td
satisfies Definition 2. In fact, for any t > t′′, let H =
{r[s]|t′ ≤ s < t}. For any neighbor j of i, we have τ i

j(t) ≥
t − td ≥ t′, thus rj [τ i

j(t)] ∈ Hj . Therefore, there exists
r−i ∈ H−i such that rj [τ i

j(t)] = (r−i)j . We shall show that
ri[t] ∈ Ui(H). We have that ri[t] ∈ Ai(r−i) ⊆ Ai(H−i).
For any r′i ∈ Ai(H−i), if predicate P1 does not hold, then
r′i ∈ Ai(r−i), which, together with Equation (6), implies
that ui(ri[t], r−i[t]) ≥ ui(r′i, r−i[t]). It follows that ri[t] ∈
Ui(H).

Remark 2 These three assumptions of the theorem should
be valid under normal network operations.

Remark 3 Note that in Definition 2, AS i is not required
to know the route selections r−i[t] of the other ASes. AS
i may not even know the sequence of times T and its set
of all possible route profiles Ri. In addition, the definition
says nothing about the routing cache of i. The r−i ∈ H−i

used in Definition 1 may have never appeared in i’s routing
cache from time t′ up to t. Moreover, at some time t, r[t]
may not even be consistent. All that is required is that the
exhibited sequences of route selections ri[t] and r[t] satisfy
the requirement in the definition. The preceding theorem is
an example clarifying this subtlety.

4. A Sufficient Condition to Guarantee Con-
vergence of Rational Route Selection Algo-
rithms

Given the definition of rational route selection algo-
rithms, in this section, we derive a sufficient condition to
guarantee stability. The advantage of deriving a sufficient
condition using the general notion of rational route selec-
tion algorithms is that we then only need to consider the
asymptotic behaviors of route selection algorithms, allow-
ing variations such as limited route experimentation.

We first define the notion of stable route selection.

Definition 3 A network consisting of ASes each of which
is running a rational route selection algorithm has a stable
route selection, if the route selection of each AS has a single
route profile, as time goes to infinite. Formally, the network
has a stable route selection if {r[t]}∞t=0 converges.

Remark 4 In the above definition, we require that, in a
stable route selection, the route selection of each AS be a
“pure” routing decision. We do not allow “mixed” strate-
gies [36], since mixed strategies involve frequent route fluc-
tuations, and are thus not desirable as “stable” solutions
for global interdomain routing.

We first observe the following important property of the
operator U :

Lemma 2 The operator U is monotone: If P,Q ⊆ R and
P ⊆ Q, then U(P ) ⊆ U(Q).

Proof: It suffices to show that Ui(P ) ⊆ Ui(Q) for an
arbitrary i.

Suppose ri ∈ Ui(P ). We first notice that, since the oper-
ator Ai as defined in (2) is monotone, ri ∈ Ai(P−i) implies
ri ∈ Ai(Q−i). To prove ri ∈ Ui(Q), we only need to show
that, for any r′i ∈ Ai(Q−i), at least one of the two predi-
cates P1 and P2, which are defined in Definition 1, holds.
We distinguish the following two cases:

1. r′i ∈ Ai(P−i). In this case, the fact that ri ∈ Ui(P )
implies that at least one of the two predicates P1 and
P2 holds.

2. r′i /∈ Ai(P−i). This case happens only if ∀r−i ∈
P−i, r

′
i /∈ Ai(r−i). Thus predicate P1 holds in this

case.

Let U (k)(R) denote the k-th iteration of the operator U
on R, for k = 0, 1, . . ., with U (0)(R) = R. We now ob-
serve that sequences consistent with rational route selection
share some common asymptotic properties:

Theorem 3 If {r[t]|t ∈ T} is consistent with rational route
selection, then for each k, there exists tk ∈ T such that, for
all t ∈ T with t ≥ tk, r[t] ∈ U (k)(R).



Proof: For k = 0, the conclusion holds trivially (choos-
ing t0 = 0) since for all t, r[t] ∈ R = U (0)(R).

Suppose the conclusion holds for k − 1. Then, there is
a tk−1 such that for all t ≥ tk−1, {r[s]|tk−1 ≤ s ≤ t} ⊆
U (k−1)(R). Since {r[t]|t ∈ T} is consistent with rational
route selection, in Definition 2 we may choose t′ = tk−1

and we may take tk > max(t′′, tk−1). Therefore, for all
t ≥ tk, we have that r[t] ∈ U({r[s]|tk−1 ≤ s < t}). By the
induction hypothesis and Lemma 2, U({r[s]|tk−1 ≤ s <
t}) ⊆ U(U (k−1)(R)) = U (k)(R). Thus, for all t ≥ tk,
r[t] ∈ U (k)(R).

By Theorem 3, when the serially unoverwhelmed set
U∞(R) = ∩∞

k=1U
(k)(R) is small, one can predict with

precision the asymptotic behavior of a sequence of network
route selections. In particular, if U∞(R) is a singleton,
Theorem 3 immediately implies that the sequence will al-
ways converge to a unique network route selection. We
therefore extend similar results in the context of strategic
learning game [35] and learning in the Internet [14] to our
route selection context.

Proposition 4 The network route selection of a network
consisting of ASes running rational route selection algo-
rithms asymptotically lie in the set U∞(R). Thus, if
U∞(R) is a singleton, the network is guaranteed the ex-
istence and uniqueness of stable route selection.

One way to guarantee that U∞(R) is a singleton is the
existence of a sequentially dominant route selection.

Definition 4 A network has a sequentially dominant route
selection (SDRS) if there is a partial order of the ASes, with
the destination being the first one, such that given the route
selection of the ASes before i in this partial order, the best
route selection of i is determined, independent of the route
selection of those after i.

If a network has an SDRS, all routes other than the unique
solution are not in the unoverwhelmed set. As such,
U∞(R) is a singleton. The convergence of such networks
under any rational route selection algorithms, therefore, fol-
lows immediately from Theorem 1 and Proposition 4. Note
that the existence of SDRS can be checked in polynomial
time.

As an application of the preceding results, we derive
a sufficient condition to guarantee routing convergence in
a heterogeneous network where each AS runs any ratio-
nal route selection algorithm, and its egress route selec-
tion satisfies the constraints imposed by business consid-
erations [17].

Theorem 5 Assume a network where each AS runs any ra-
tional route selection algorithm, and selects egress routes
independent of inbound traffic. Assume that 1) there is
no provider-customer loop in the network; and 2) each
AS adopts the typical export policy and the standard joint-
route preference [44]. Then U∞(R) is a singleton; that is,

the network is guaranteed to converge to the unique stable
route.

Proof: (sketch) When the conditions of the theorem are
satisfied, we can use an induction proof to show the exis-
tence of an SDRS. Therefore, the network is guaranteed to
converge to the unique stable route.

Remark 5 The preceding convergence result is more gen-
eral than that proved in previous studies in that it is not
limited to just homogeneous networks where each AS has
to run the greedy, best-response BGP algorithm. Other ac-
tions, such as non-persistent experimentation are allowed.

5. Inbound-dependent Route Selection:
Traffic-Demand-Matrix-Based Algorithms

5.1. A Motivating Example

Starting from this section, we apply our general frame-
work of rational route selection algorithms to study the sta-
bility of a network when ASes may adopt general local poli-
cies that take into account inbound traffic patterns.

Provider−to−customer
SBFD
SCD
SBD

{S}BD
{}BD
{}BFD

{S}BFD
F

C

D

B

S

Figure 2. The ranking of egress routes at B
depends on inbound traffic. S is the source,
and D is the destination.

We start with an example shown in Figure 2. The exam-
ple is motivated by the increasing usage of multihoming and
its potential effects on some transit ISPs. A special feature
of this example network is that the ranking of egress routes
at B, who is one of the two competing transit providers of
source S, depends on its inbound traffic. For generality, we
say that B ranks outcomes, instead of just egress routes. An
outcome consists of both an egress route and ingress traf-
fic pattern. For generality, we assume a ranking table at
each AS, which lists, in decreasing order, all of the poten-
tial outcomes. Note that in practice, a ranking table can
be implemented, compactly, by an objective or utility func-
tion. Specifically, {S}BFD denotes the outcome that B
uses the egress route BFD and S sends traffic for destina-
tion D through B; {}BD denotes the outcome that B uses
the route BD and S does not send any traffic through B.

This example network does not appear to be a pathologi-
cal case and can well happen in practice. S is a multihomed
network with two providers C and B to improve reliability.



The ranking table of S is constructed according to the stan-
dard BGP decision process: S prefers routes with small AS-
hop counts; for two routes with the same AS-hop count, it
uses the next-hop ID to break the tie. As for B, when traffic
volume is high (i.e., when S uses B as its transit provider),
B selects BFD over BD; on the other hand, when traffic
volume is low (i.e., when S does not use B as its transit
provider), B chooses BD over BFD. A potential revenue
function that may cause this scenario to happen is shown in
Figure 3; that is, BFD is more profitable for B when the
traffic volume is high, while BD is more profitable for B
when the traffic volume is low. Note that it is possible to
reverse the provider-customer relationship of the AS pairs,
CD, FD, BF , and BD. Then the preference of B can be
justified by cost instead of revenue.

B + S

Total BFD

BD

B only Traffic
Volume

Revenue

Figure 3. A revenue function justifying the
route selection behavior of B in Figure 2. “B
only” denotes the traffic volume when S does
not use B as its transit provider; and B + S
denotes that when S uses B.

5.2. Instability of a Traffic-Demand-Matrix-Based
Greedy Route Selection Scheme

A common approach for B to implementing inbound-
dependent route selection is to use a traffic-demand-matrix-
based algorithm (e.g., [3, 19]). The basic structure of such
an algorithm is that time is divided into multiple periods.
During each time period, the algorithm measures the traffic
demand matrix. At the end of each time period, the algo-
rithm computes and installs the optimal route selection for
the next period.

In particular, B could implement a route selection al-
gorithm using the greedy strategy as follows. During each
time period n, B estimates total traffic demand to destina-
tion D; At the end of time period n, B computes the optimal
route selection (BFD or BD), based on the measured in-
bound traffic demand and its traffic engineering objectives.
B then installs the optimal route selection at the beginning
of time period n + 1. As we have discussed in the introduc-
tion, this algorithm can be implemented either by a network
operator manually, which will operate at a longer time scale,
or by a traffic engineering program, which will operate at a
much faster speed.

However, this traffic-demand-matrix-based greedy route
selection algorithm is not a rational route selection algo-
rithm (which we will show later). It will also cause routing
instability in the example network. To see this, assume that
B initially chooses egress route BD. B exports BD to S;
therefore, S chooses SBD over SCD, and the traffic from
S to D goes through B. However, given this high inbound
traffic demand, B prefers BFD over BD; thus B switches
its route selection to BFD and exports to S. This change
of egress route causes S to choose SCD over SBFD, and
thus traffic of S no longer goes through B. Given that now
the inbound traffic is low, B switches back to route selection
BD, since it prefers BD over BFD at low traffic. Thus, we
have obtained persistent route oscillations2.

The above instability is due to the fact that under the pre-
ceding traffic-demand-matrix-based greedy route selection
algorithm, B mis-associates the outcomes with its available
actions (B has two available actions in the preceding ex-
ample: choosing BD or BFD). This example is also an
example of instability caused by route selection algorithms.

There is, however, a simple rational route selection al-
gorithm that can choose the optimal route and maintain
stability for B, if B does not restrict its route selection
algorithm to always use the greedy strategy. This algo-
rithm consists of an experimentation phase and a selec-
tion phase. At the beginning, B does not know the as-
sociated outcomes of choosing BD or BFD, thus it will
first experiment with these two actions, one at a time. In
this phase, B will fix its chosen action for enough amount
of time, and observe the associated outcome of the cho-
sen egress route (we assume that S will respond to B’s
chosen egress route in bounded time). Using our nota-
tion in Section 3, AS B observes the set of network route
selections H = {{BD,SBD}, {BFD,SCD}}. De-
note r = {BD,SBD} and r′ = {BFD,SCD}. AS
B then enters the the selection phase. Since uB(r) >
uB(r′), AB(r−B) = AB(r′−B) = {BD,BFD}, we have
U∞

B ({r, r′}) = {BD}. Therefore, AS B selects the opti-
mal egress route BD, the only one in U∞

B ({r, r′}). Note
that this simple algorithm conforms to the definition of ra-
tional route selection. On the other hand, the greedy algo-
rithm does not since it chooses BFD infinitely often which
is not in U∞

B ({r, r′}).
Therefore, depending on the route selection algorithms

used by B, the example network may or may not experience
routing instability, even if the local policies of the ASes in
the network remain the same. This example thus serves as
an example showing that, the stability of a network depends
on the the route selection algorithms used by all ASes in the
network.

2This example generalizes the oscillations of classical single-path adap-
tive routing where only latency is considered [2, 28]



5.3. Optimal and Stable Inbound-dependent Ratio-
nal Route Selection by a Single AS

Generalizing the two-phase route selection algorithm for
B in the example network in Section 5, Figure 4 specifies a
rational route selection algorithm which can guarantee sta-
bility and optimality, when only AS i adopts this inbound-
dependent route selection algorithm. Note that in Figure 4,
ri is a route selection constructed from the routes exported
by AS i’s neighbors.

� Tconv is maximum time for routing convergence
� Tm is the measurement time
� Ri is the set of available, unoverwhelmed route selections

constructed from routes exported by i’s neighbors
� tm(ri) represents the inbound traffic matrix when choosing ri

foreach ri in Ri

install ri

estimate tm(ri) by
waiting for Tconv

measuring tm(ri) for Tm

if any route in Ri is overwhelmed
remove it from Ri

Figure 4. An inbound-dependent rational
route selection algorithm by a single AS.

Specifically, in the context of Internet interdomain route
selection, when ASes are constrained by Internet business
considerations, Theorem 6 shows that the algorithm in Fig-
ure 4 can guarantee stability and optimality. Due to space
limitation, we omit its proof, and note that an induction
proof can be constructed.

Theorem 6 The network converges, and an AS i converges
to its optimal outcome, if the following conditions are satis-
fied:

1. there is no provider-customer loop in the network;

2. all ASes except i adopt the typical export policy;

3. each AS prefers customer routes over peer/provider
routes;

4. AS i adopts the route selection algorithm in Figure 4,
and no other AS uses any inbound-dependent route se-
lection.

6. Inbound-Dependent Route Selection: In-
stability of Networks under any Rational
Route Selection Algorithms

Unfortunately, with inbound-dependency, there exist
networks which have no stable route selection under any ra-
tional route selection algorithms; that is, we can arbitrarily

assign route selection algorithm to each AS, so long each al-
gorithm is a rational route selection algorithm, the network
has no stable route selection.

In particular, Figure 5 is such an example network. Sim-
ilar to the network in Figure 2, this network is constructed
to satisfy all constraints imposed by AS business consider-
ations; thus, if there were no inbound dependency, the net-
work has a unique stable route selection [17]. Also similar
to the network in Figure 2, this network does not appear
to be a pathological case and can well happen in practice.
Note that this network is a heterogeneous network, where
the ranking of routes at S is inbound independent; while A
and B are inbound dependent.

Provider−to−customer

SAD
SBD
SAED
SBFD

{S}AED
{S}AD

{}AD
{}AED

{S}BD
{}BFD
{}BD

{S}BFD

A

D

E F

S

B

Figure 5. An example with instability. D is the
only destination.

The instability of the example network in Figure 5 un-
der any rational route selection scheme is established by the
following result:

Theorem 7 Suppose that a sequence of network route se-
lections {r[t]}∞t=0 is consistent with rational route selection
and that it converges to a stable route selection r∗. Then the
following holds for each AS i:

∀r′i ∈ Ai(r∗−i), ui(r∗i , r∗−i) ≥ ui(r′i, r
∗
−i).

Proof: Since {r[t]}∞t=0 converges to r∗, there exists t′

such that ∀t ≥ t′, r[t] = r∗. Since the sequence is consis-
tent with rational route selection, there exists t′′ > t′, such
that ∀t > t′′ and ∀i, ri[t] ∈ Ui({r[s]|t′ ≤ s < t}). Notice
that {r[s]|t′ ≤ s < t} = {r∗}, by definition of Ui, we have
that

∀r′i ∈ Ai(r∗−i), ui(r∗i , r∗−i) ≥ ui(r′i, r
∗
−i).

An analysis of all of the possible network route selec-
tions of the example in Figure 5 shows that no network route
selection satisfies the condition in Theorem 7. As a result,
the network cannot converge to a stable route selection, un-
der any rational route selection algorithm.

To further understand the example, consider the dynam-
ics. When A and B choose AD and BFD. The outcome
is SAD since S ranks SAD higher than SBFD. Then A
has incentive to change from AD to AED since A ranks
{S}AED higher than {S}AD. However, B realizes that,
it can achieve a better outcome by changing BFD to BD



since S will choose SBD over SAED. This in turn trig-
gers A to switch from AED back to AD. Thus we end up
with A chooses AD and B chooses BFD again, and the
process continues forever.

7. Conclusions and Future Work

In this paper, we have proposed the notion of rational
route selection algorithms, where inferior routes are itera-
tively eliminated. We derive a sufficient condition to check
the stability of a heterogeneous network so long the route
selection algorithm of each AS is rational in the context.
Applying our general result, we analyze the stability of in-
terdomain route selection where an AS’s ranking on routes
depends on inbound traffic. We have shown that the com-
mon scheme of choosing the best routes according to the
traffic-demand matrix of the preceding period could lead
to instability, when the inbound traffic depends on route
selection. We have also shown that there exist networks
where routing will be unstable under any rational route se-
lection algorithms, even when the ASes strictly follow the
constrains imposed by AS business considerations.

The unstable network shown in Section 6 is particularly
troubling in that it does not appear to be a pathological case,
and thus could happen in practice. When we encounter such
an unstable network setting in practice, there is still no sat-
isfactory solution. Fundamentally, to stabilize the network,
tradeoff between local optimality and global stability must
be made. Thus to design a stable route selection protocol,
the ASes in a network must be willing to look into the fu-
ture, form the right coalition, and sacrifice short-term bene-
fits. Previous work such as route suppression (e.g., [23]) and
route dampening (e.g., [34]) represents interesting poten-
tial directions. However, how to design interdomain routing
protocols where the tradeoff between stability and local op-
timality is explicitly made in an incentive-compatible way
is still a major remaining challenge.

Acknowledgments

We thank Jiang Chen, Ronny Dakdouk, Joan Feigen-
baum, Eric Friedman, Arvind Krishnamurthy, and Jen-
nifer Rexford for valuable comments and discussions. The
connection between inbound-dependent route selection al-
gorithms and traffic-demand-matrix-based algorithms is
pointed out by Tim Griffin. We are grateful to his help.

References

[1] M. Afergan and J. Wroclawski. On the benefits and feasibil-
ity of incentive based routing infrastructure. In Proceedings
of ACM SIGCOMM ’04 Workshop on Practice and Theory
of Incentives and Game Theory in Networked Systems, Port-
land, OR, Sept. 2004.

[2] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall,
Second Edition, 1992.

[3] T. Bressoud, R. Rastogi, and M. Smith. Optimal configura-
tion for BGP route selection. In Proceedings of IEEE INFO-
COM ’03, San Francisco, CA, Apr. 2003.

[4] R. Dakdouk, H. Wang, H. Xie, and Y. R. Yang. Interdomain
routing as social choice: A new perspective. Technical Re-
port YALEU/DCS/TR-1331, Yale University, July 2005.

[5] N. Feamster, J. Borkenhagen, and J. Rexford. Guidelines for
interdomain traffic engineering. ACM SIGCOMM Computer
Communications Review, Oct. 2003.

[6] N. Feamster and J. Rexford. Network-wide BGP route pre-
diction for traffic engineering. In Proceedings of ITCOM,
Boston, MA, Aug. 2002.

[7] J. Feigenbaum, D. Karger, V. Mirrokni, and R. Sami.
Subjective-cost policy routing. Technical Report
YALEU/DCS/TR-1302, Yale University, Sept. 2004.

[8] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker.
A BGP-based mechanism for lowest-cost routing. In Pro-
ceedings of the 21st ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 173–182, Monterey, CA,
July 2002.

[9] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism design
for policy routing. In Proceedings of the 23rd ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages
11–20, St. John’s, Newfoundland, Canada, July 2004.

[10] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and
B. Maggs. Locating Internet routing instabilities. In Pro-
ceedings of ACM SIGCOMM ’04, Portland, OR, Aug. 2004.

[11] A. Feldmann and J. Rexford. IP network configuration for
intradomain traffic engineering. IEEE Network Magazine,
pages 46–57, Sept./Oct. 2001.

[12] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering
with traditional IP routing protocols. IEEE Communication
Magazine, Oct. 2002.

[13] E. Friedman. Asynchronous learning in decentralized en-
vironments: A game theoretic approach. In K. Tumer and
D. Wolpert, editors, Collectives and the Design of Complex
Systems. Springer-Verlag, 2004.

[14] E. Friedman and S. Shenker. Learning and imple-
mentation on the Internet. Working paper. Available
at http://www.orie.cornell.edu/˜friedman/
pfiles/decent.ps, 1997.

[15] E. Friedman, M. Shor, S. Shenker, and B. Sopher. An experi-
ment on learning with limited information: Nonconvergence,
experimentation cascades, and the advantage of being slow.
Games and Economic Behavior, 47(2):325–352, 2004.

[16] L. Gao, T. G. Griffin, and J. Rexford. Inherently safe backup
routing with BGP. In Proceedings of IEEE INFOCOM ’01,
Anchorage, AK, Apr. 2001.

[17] L. Gao and J. Rexford. Stable Internet routing without
global coordination. IEEE/ACM Transactions on Network-
ing, 9(6):681–692, Dec. 2001.

[18] R. Gao, C. Dovrolis, and E. W. Zegura. Interdomain ingress
traffic engineering through optimized AS-path prepending.
In Proceedings of Networking’05, 2005.



[19] D. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang.
Optimizing cost and performance for multihoming. In Pro-
ceedings of ACM SIGCOMM ’04, Portland, OR, Aug. 2004.

[20] R. Govindan and A. Reddy. An analysis of Internet inter-
domain topology and route stability. In Proceedings of IEEE
INFOCOM ’97, Kobe, Japan, Apr. 1997.

[21] T. G. Griffin, A. D. Jaggard, and V. Ramachandran. Design
principles of policy languages for path vector protocols. In
Proceedings of ACM SIGCOMM ’03, Karlsruhe, Germany,
Aug. 2003.

[22] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable
paths problem and interdomain routing. IEEE/ACM Trans-
actions on Networking, 10(22):232–243, Apr. 2002.

[23] T. G. Griffin and G. Wilfong. A safe path vector protocol. In
Proceedings of IEEE INFOCOM ’00, Tel Aviv, Israel, Mar.
2000.

[24] On Stable Route Selection for Interdomain Traffic Engineer-
ing: Models, Analysis, and Guidelines, Boston, MA, Oct.
2005.

[25] A. Jaggard and V. Ramachandran. Robustness of class-based
path-vector systems. In Proceedings of the 12nd Interna-
tional Conference on Network Protocols (ICNP) ’04, Berlin,
Germany, Oct. 2004.

[26] A. Jaggard and V. Ramachandran. Relating two formal mod-
els of path-vector routing. In Proceedings of IEEE INFO-
COM ’05, Miami, FL, Apr. 2005.

[27] R. Johari and J. N. Tsitsiklis. Routing and peering in a com-
petitive Internet. Available at: http://web.mit.edu/
jnt/www/publ.html, Jan. 2003.

[28] A. Khanna and J. Zinky. The revised ARPANET routing
metric. ACM SIGCOMM Computer Communications Re-
view, Sept. 1989.

[29] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed
Internet routing convergence. In Proceedings of ACM SIG-
COMM ’00, Stockholm, Sweden, Aug. 2000.

[30] C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing
instability. In Proceedings of ACM SIGCOMM ’97, Cannes,
France, Sept. 1997.

[31] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Ex-
periences applying game theory to system design. In Pro-
ceedings of ACM SIGCOMM ’04 Workshop on Practice and
Theory of Incentives and Game Theory in Networked Sys-
tems, Portland, OR, Sept. 2004.

[32] R. Mahajan, D. Wetherall, and T. Anderson. Towards co-
ordinated interdomain traffic engineering. In Proceedings
of Third Workshop on Hot Topics in Networks (HotNets-III),
San Diego, CA, Nov. 2004.

[33] R. Mahajan, D. Wetherall, and T. Anderson. Negotiation-
based routing between neighboring domains. In Proceedings
of USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI ’05), San Francisco, CA, May
2005.

[34] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz.
Route flap damping exacerbates Internet routing conver-
gence. Computer Communication Review, 32(4):221–233,
2002.

[35] P. Milgrom and J. Roberts. Adaptive and sophisticated learn-
ing in normal form games. Games and Economic Behaviors,
3:82–100, 1991.

[36] M. J. Osborne and A. Rubenstein. A Course in Game Theory.
The MIT Press, 1994.

[37] B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen, and
O. Bonaventure. Interdomain traffic engineering with
BGP. IEEE Communications Magazine, 41(5):122–128,
May 2002.

[38] J. L. Sobrinho. Network routing with path vector protocols:
Theory and applications. In Proceedings of ACM SIGCOMM
’03, Karlsruhe, Germany, Aug. 2003.

[39] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, Z. M.
Mao, S. Shenker, and I. Stoica. Towards a next genera-
tion inter-domain routing protocol. In Proceedings of Third
Workshop on Hot Topics in Networks (HotNets-III), San
Diego, CA, Nov. 2004.

[40] R. Teixeira, T. Griffin, A. Shaikh, and G. Voelker. Network
sensitivity to hot-potato disruptions. In Proceedings of ACM
SIGCOMM ’04, Portland, OR, Aug. 2004.

[41] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynam-
ics of hot-potato routing in IP networks. In Proceedings of
Joint International Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS), New York, NY,
June 2004.

[42] K. Varadhan, R. Govindan, and D. Estrin. Persistent route
oscillations in inter-domain routing. Computer Networks,
32(1):1–16, 2000.

[43] H. Wang, R. K. Chang, D.-M. Chiu, and J. C. Lui. Char-
acterizing the performance and stability issues of the AS
path prepending method: Taxonomy, measurement study and
analysis. In Proceedings of ACM SIGCOMM Asia Workshop,
Apr. 2005.

[44] H. Wang, H. Xie, Y. R. Yang, L. E. Li, Y. Liu, and A. Silber-
schatz. On stable route selection for interdomain traffic engi-
neering: Models, analysis, and guidelines. Technical Report
YALEU/DCS/TR-1316, Yale University, Feb. 2005.


