
MuON: Epidemic Based Mutual Anonymity

Neelesh Bansod Ashish Malgi Byung Kyu Choi
Jean Mayo∗

Michigan Technological University
Department of Computer Science

1400 Townsend Drive, Houghton, MI - 49931
{npbansod, asmalgi, bkchoi, jmayo}@mtu.edu

Abstract

A mutually anonymous service hides the identity of a
client from the service provider and vice-versa. Providing
mutual anonymity usually requires a large number of par-
ticipants. While peer-to-peer (P2P) networks are capable
of recruiting a large number of participants, reliable anony-
mous communication in these architectures, with low band-
width usage, still needs further investigation.

This paper presents MuON, a protocol to achieve mu-
tual anonymity in unstructured P2P networks. MuON lever-
ages epidemic-style data dissemination to deal with the high
churn (changes in system membership) characteristic of un-
structured P2P networks. The results from our security
analysis and simulation show that MuON provides mutual
anonymity over unstructured P2P networks while maintain-
ing predictable latencies, high reliability, and low commu-
nication overhead.

1. Introduction

Many online applications such as banking, electronic
voting, information sharing and searching etc, need
anonymity to prevent third parties (or adversaries) from
gathering information related to services and their clients.
Most of these online services have a common model of in-
teraction; a client (the initiator) sends a request to a node
(the responder) that provides the service. The responder
processes the request, and sends the corresponding response
to the initiator. Based on this model of interactions, differ-
ent types of anonymity [22, 25, 36] can be provided to ap-
plications: initiator anonymity, responder anonymity, mu-
tual anonymity and unlinkability. Initiator anonymity hides
the identity of the initiator from the responder and adver-
sary. Responder anonymity hides the identity of the re-

∗Author was supported in part by NSF CAREER grant CCR-9984682

sponder from the initiator and adversary. Mutual anonymity
provides both initiator anonymity and responder anonymity.
Unlinkability of initiator and responder means that the ini-
tiator and responder cannot be identified as communicating
with each other, even though they can be identified as par-
ticipating in some communication.

Different approaches have successfully achieved various
forms of anonymity. In the simplest approach, a proxy
is used for communication between initiator and respon-
der [1, 13]. However, this system fails if the proxy it-
self reveals the identities of the communicating parties. To
overcome this single point of failure, most anonymity pro-
tocols [3, 11, 12, 24, 25, 37] provide anonymous com-
munication using indirection; messages from the sender
(initiator/responder) are routed through the intermediate
relay nodes till they reach the final destination (respon-
der/initiator). Some anonymity protocols [29, 31, 32] mul-
ticast messages to a large group of nodes to provide anony-
mous communication. It is important to note that in both
approaches, the anonymity in the system improves as the
number of participant nodes increases.

Experiences with P2P systems indicate the ability of
these architectures to attract a large number of partici-
pants. There have been anonymity protocols that use dif-
ferent kinds of P2P systems such as structured P2P systems
[37], IP layer P2P systems [12] and hybrid P2P systems
[36] for providing anonymity. An unstructured P2P net-
work does not impose a structure on its participant nodes
and thus has several desirable characteristics such as ad-
ministrative ease, ease of deployment and self-organization.
Unstructured P2P networks however, pose significant chal-
lenges for anonymous communication protocols. An ex-
ample of this kind of network is the Gnutella file sharing
system, which is known to consume high bandwidth [27].
A study by Saroiu et al.[28] has shown that P2P systems
exhibit high churn (changes in system membership); peers
frequently leave/join the network and most peers are con-
nected to the overlay for a short period of time. Similarly

the nodes within the P2P network cannot be trusted by the
anonymity protocol. These peers may attempt to tamper
with messages, masquerade as the responder, drop mes-
sages that they are supposed to forward, or subvert the pro-
tocol by any other means. The peers within the network
could also collude to violate the anonymity guarantees.

In this paper, we present MuON, a protocol for mu-
tual anonymity and unlinkability over unstructured P2P net-
works. The key contribution is its epidemic-style [6, 17, 34]
message sending protocol. Our simulation results show that
it achieves anonymous communication with high reliability
while maintaining low latencies and low overhead.

The paper is organized as follows: Section 2 discusses
the goals of MuON. Section 3 summarizes the prior ap-
proaches for anonymity and introduces epidemic proto-
cols. Section 4 describes MuON in detail, followed by the
anonymity and performance evaluations in section 5. The
contributions and future work are summarized in section 6.

2. Goals of MuON

The main motivation of MuON is to strike a balance be-
tween performance and anonymity in a dynamic unstruc-
tured P2P network. The main goals are described below:
Mutual Anonymity: An initiator sends a request for a
service without knowing which node actually provides the
service. Likewise, the responder sends responses without
knowing the identity of the initiator.
Unlinkability: Identities of the communicating parties (ini-
tiators and responders) are hidden from adversaries.
Bounded Latencies: Communication latency is bounded.
High Reliability: The messages sent by the initiator to the
responder and vice-versa are delivered reliably.
Communication Overhead: The communication overhead
incurred by each participant peer should be low.
Scalability: Metrics like reliability, anonymity, communi-
cation latency and overhead should scale well with the size
of the P2P network and the churn within the network.
Message Integrity and Confidentiality: Intermediate
nodes cannot modify messages and cannot masquerade as
responders; requests sent by an initiator can be read only by
the corresponding responder; responses can be read only by
the initiator, which sent the corresponding request.

3. Related Work and Motivation

This section reviews prior systems that provide different
kinds of anonymity over various network architectures.

3.1. Anonymity by Mixes

One of the earliest proposed approaches for anonymous
communication is Chaum’s Mix-Net[7], which is the basis

of subsequent systems like Babel [15] and Mixminion[9].
These approaches hide the communication between sender
and receiver by encrypting messages in layers of public
key cryptography. Messages are relayed through a group
of dedicated message relays called ”mixes”. Each mix de-
crypts messages, delays, and reorders messages before re-
laying them to another mix. These systems achieve strong
anonymity guarantees at the cost of latency. While they
provide anonymity against global adversaries, the random
delaying within the mix network results in unbounded and
high latencies unsuitable for interactive applications.

3.2. Anonymity by Proxy

Several systems use a proxy to provide anonymity. Ex-
amples include Anonymizer [1] and Lucent Personalized
Web Assistant [13] which use an intermediate proxy to pro-
vide anonymity to users. Likewise PRA: Proxy for Re-
sponder Anonymity [29] uses a proxy to provide respon-
der anonymity, while APFS Unicast [29] uses an interme-
diate proxy and onion routing to provide mutual anonymity.
Proxy based systems place a great deal of trust on the proxy.
Thus they are vulnerable to failure if the proxy is compro-
mised and reveals the identity of the communicating parties.

3.3. Anonymity by Single-Path Forwarding

Many protocols provide anonymous communication by
forwarding messages along a single anonymous path,
formed through the group of nodes within the infrastruc-
ture. This anonymous path can be specifically created, or is
formed by random forwarding.

Onion Routing [24] provides anonymous communica-
tion using a dedicated set of message relays called ”onion
routers”. The sender selects a path from the set of onion
routers. It then wraps the data within encrypted layers to
form an onion. The innermost layer of encryption in the
onion uses the encryption key of the path’s last hop, while
the outermost layer uses the encryption key of the path’s
first hop. Onion routers co-operate and forward the onion
from the sender to the destination. Tor [11], the second gen-
eration of Onion Routing, provides initiator anonymity and
responder anonymity by using rendezvous points.

Xiao et al.[36] propose two protocols for mutual
anonymity in hybrid P2P networks. These protocols,
named Center-Directing and Label-Switching, use trusted
third parties to provide anonymity. They also proposed
Shortcut-Responding [36], which combines onion routing
and broadcasting to provide mutual anonymity within un-
structured P2P networks.

TAP [37] provides initiator anonymity in structured P2P
networks by building replicated tunnels. The replicated tun-
nels enable the protocol to combat network churn.

Tarzan [12] is an anonymous IP layer P2P system
that provides initiator anonymity. Initiators create tunnels
through the overlay by distributing session keys. The data
is then passed through this tunnel using layered encryp-
tion/decryption (analogous to onion routing).

Crowds [25] provides initiator anonymity using random
forwarding. The initiator sends the (suitably encrypted)
message to a randomly chosen node in the network called
jondo. Each jondo randomly decides to either send the data
to the responder or to forward it to another jondo.

In networks with high churn (nodes frequently join
and leave the P2P network), approaches that utilize single
anonymous paths are bound to suffer from path losses. Con-
sider an anonymous path of length n nodes. If p is the prob-
ability of a node leaving the overlay, then a given path is
valid with a probability of (1 − p)n. With increasing path
lengths (increasing n) and increasing churn within the net-
work (increasing p), the probability that a given path is valid
diminishes. Hence approaches using a single-path will in-
cur with greater probability, the additional overhead of de-
tecting and rebuilding failed paths. Providing this kind of
fault tolerance will likely be a high overhead operation and
has not been extensively explored in the context of main-
taining anonymity guarantees.

3.4. Anonymity by Group Communication

Many systems use group communication primitives like
multicasting and flooding to achieve anonymity.

P5, Peer-to-Peer Personal Privacy Protocol [31] pro-
poses a novel approach for mutual anonymity using broad-
cast channels. It defines a logical hierarchy of broadcast
groups, and the nodes within the P2P network join one or
more of these groups when entering the system.

GAP [3] (part of GNUnet) uses controlled flooding to
achieve initiator and responder anonymity in a P2P network.

APFS (Anonymous P2P File Sharing) [29] includes
APFS Multicast, a protocol that uses multicasting to pro-
vide mutual anonymity within P2P file sharing applications.

Hordes [32] provides initiator anonymity using multi-
casting. A multicast group is formed by all the initiator
nodes. Initiators send requests to responders using Crowds
or Onion routing, while the responder multicasts the re-
sponse to the group of initiators.

Protocols that depend on group communication primi-
tives like multicasting are ideally suited for networks with
high churn, because the departure of a few nodes does not
substantially impact the communication between the sender
and receiver. Previous work [32] also indicates that the
use of multicasting helps reduce communication latencies.
However, the lack of widespread deployment of IP multi-
cast infrastructure inhibits deployment of protocols based
on this type of multicast [29, 31]. GAP [3] takes a higher

p

q

r

s

M0

Gossip message

Message ‘pull’

t2t0 t1 t3 t4 t5 t6

Figure 1. Epidemic protocols

level approach, but achieves reliability by flooding, which
may not scale well in large unstructured P2P networks.
Hordes [32] uses single-path forwarding to send requests,
and potentially incurs the additional overhead of detecting
and rebuilding failed paths.

3.5. Epidemic Protocols

Epidemic (or gossip) protocols [10] are a well-studied
class of protocols for low-cost reliable data dissemination
within groups. They have been shown to be much more ef-
ficient than flooding based approaches [23, 33]. Epidemic
protocols provide higher reliability and scalability while us-
ing lower bandwidth [17], when compared to other reliable
multicast protocols. They provide a bimodal guarantee of
reliability [6]; a message reaches all members of the group
with a high probability, and the probability that it will reach
to just a few members of the group is very low. Studies have
shown that the time required to disseminate data to the en-
tire group is lo g (N), where N is the number of nodes within
the group. Due to these desirable characteristics, MuON
uses an epidemic-style protocol for data dissemination.

A simplified gossip protocol is depicted in Figure 1.
Each node runs several rounds of the gossip protocol. In
each round, a node selects a random node as its gossip tar-
get. The node sends the gossip target(s) a gossip message
containing a list of message identifiers that it has heard of
(represented by dotted lines between nodes). If the list con-
tains a message identifier which the gossip target has not
received, the gossip target will request the node to send it
(represented by solid lines between nodes). Three impor-
tant parameters that impact gossip protocols are F a nO u t,
Tinte r v a l and G C . F a nO u t is the number of gossip targets
used in each round (F a nO u t is two in the figure). Tinte r v a l

is the time between successive protocol rounds. (In the fig-
ure, since node p is seen to start gossip rounds at time t1 and
t6, Tinte r v a l = t6−t1). G C (Gossip Count) determines the
number of rounds a message is gossiped by a node. These
parameters determine the speed and efficiency of the proto-
col and have been rigorously studied by Birman et al [6].

4. MuON

This section first describes the the system model and as-
sumptions for deploying MuON. It then describes the data
dissemination (message sending) protocol along with the
notation used. The message sending protocol is used in both
directions, from initiator to responder and vice-versa. Fi-
nally, it describes how the message sending protocol is used
for communication between the initiator and responder.

4.1. System Model

MuON operates over an unstructured P2P network. Let
N be the number of nodes within the overlay (referred to as
the overlay size). We assume that nodes within the overlay
know at least log(N) other peers in the overlay. This mem-
bership list for epidemic protocols can be maintained using
services such as SCAMP [14] and ” Peer Sampling Service”
[18]. MuON assumes that all initiators and responders are
members of the P2P network. All protocol messages use
low-cost unreliable transport (UDP) for communication.

Services are identified by a service identifier. To send a
request for a particular service, the initiator obtains the pub-
lic key corresponding to the service. This public key is used
for initiating the communication between the initiator and
responder. Thus the identity of the responder node that pro-
vides the service, is not revealed to the initiator. The mes-
sage sending protocol of MuON ensures that initiator and
responder anonymity and unlinkability are maintained. The
use of public and session keys ensure that data integrity and
confidentiality are maintained. The public keys of MuON
are not tied to any specific algorithm; for example incom-
parable public keys [35] could be used.

The protocol assumes that there exists some mechanism
that provides public keys corresponding to the service iden-
tifier. The system places some trust on this mechanism; the
mechanism provides correct public keys only and it does
not reveal the identity of the node corresponding to the pub-
lic key. For convenience, the protocol description assumes
the presence of a trusted PKI (Public Key Infrastructure),
though an initiator could obtain public keys out-of-band.
It is interesting to note that the communication between
the PKI and the initiator itself must be done anonymously.
However, it is easy to conceive the PKI as a service within
MuON itself, whose public key is well known and distrib-
uted out-of-band.

4.2. Notation

Before looking into the details of the MuON, we first
look at the notation used within the protocol.

ksession Symmetric session key
k+

A
, k−

A
Public and private keys of node A respectively

{d a ta }ks d a ta encrypted/signed using key ks

(ks is public, private or session key)
r1 Nonce
H(d a ta) Cryptographic hash computed over d a ta

(e.g. SHA-1)
self Identity of the node executing the protocol

(e.g. IP-address)
pinter Intermediate probability, parameter controlling

anonymity and performance of MuON
Tinter v a l Time interval between successive protocol rounds
F a n O u t Number of gossip targets per protocol round
G C Number of protocol rounds a message is gossiped
MSG Data message (a request or a response message)
MSG HDR The header corresponding to MSG. Format is

{currOwner, h d r, H(h d r)}, where currOwner is the
node that has the corresponding MSG and h d r de-
pends on type of MSG (refer to section 4.4).

/* Adding a header (MSG HDR) to the headerBuffer */
addheader(MSG HDR):
begin

slot = free slot in the headerBuffer
headerBuffer[slot].MSG HDR = MSG HDR
headerBuffer[slot].gossipCount = 0

end

/* Add message (MSG) and its header (MSG HDR) */
addmessage(MSG, MSG HDR):
begin

addheader(MSG HDR)
Add MSG to the messageBuffer
Associate MSG with H(hdr) contained in MSG HDR

end

/* Sending message MSG with header hdr. The node
* sending MSG computes the message’s hdr (described
* in later sections). self indicates the identity of the node
* that executes this method */
sendMessage (hdr, MSG):
begin

MSG HDR={self, hdr, H(hdr)}
addmessage(MSG, MSG HDR)

end

Algorithm 1: Common procedures used by algorithms

/* Runs every Tinter v a l units of time */
gossipRound:
gossipMesssage = all MSG HDR ∈ headerBuffer
for i=0 to FanOut do

Randomly select a peer ni from the overlay
Send gossipMessage to ni

for every used slot in headerBuffer do
headerBuffer[slot].gossipCount++
if headerBuffer[slot].gossipCount > GC then

Free headerBuffer[slot] by removing MSG HDR from
headerBuffer and removing its corresponding MSG from
messageBuffer.

Algorithm 2: Gossip round

/* When node B receives gossipMessage */
onRecvGossipMessage:
foreach MSG HDR ∈ gossipMessage do

Let MSG HDR = {currOwner, hdr, H(hdr)}
if H(hdr) ∈ headerBuffer then return
if hdr can be deciphered then

/* This implies that MSG HDR corresponds to a
* MSG destined for B */
Request currOwner to send MSG associated with H(hdr)
when MSG arrives then
begin

Deliver MSG to application
if true with probability pinter then

/* Setting self as currOwner */
MSG HDR = {B, hdr, H(hdr)}
addmessage(MSG, MSG HDR)

else
addheader(MSG HDR)

end
else

if true with probability pinter then
Request currOwner to send MSG associated with
H(hdr)
when MSG arrives then
begin

/* Setting self as currOwner */
MSG HDR = {B, hdr, H(hdr)}
addmessage(MSG, MSG HDR)

end
else

addheader(MSG HDR)
end

Algorithm 3: Receiving a gossip message

4.3. Message Sending in MuON

The message sending protocol of MuON is unidirec-
tional; it is used to send requests from an initiator to a re-
sponder and then again to send a response from the respon-
der to the initiator. Let MSG denote the encapsulated data to
be sent (thus MSG may be a request or a response). MuON
generates a header, denoted MSG HDR, that corresponds to
MSG. We assume1 that the size of MSG HDR is much less
than MSG, since MSG HDR contains only the required iden-
tifiers and cryptographic keys (details are in section 4.4).

The basic operation of the protocol is depicted in Fig-
ure 2, which shows node X sending MSG to node Y. MuON
uses an epidemic protocol to disseminate MSG HDR to all
nodes within the P2P network, while the larger MSG is dis-
seminated to only a few nodes within the network (shaded
within Figure 2). As explained in detail later, the number of
nodes which receive MSG depends on the value of pinter.

1This assumption holds true in applications with large responses (e.g.
file-transfer and web-browsing). In these applications, MuON achieves
substantial bandwidth savings compared to other group communication
based anonymity protocols. We anticipate that MuON will provide a band-
width reduction for applications with small data messages (e.g. e-voting)
that require reliable delivery, though these applications are not evaluated
in this paper.

A

B

MESSAGE TRANSFER

MESSAGE HEADERS

P

A,MSG

A,MSG

X

Y

Node X communicating to Y.

X,MSG

X, MSG

B,MSG

Figure 2. Data dissemination in MuON

The protocol ensures that the responder always gets MSG.
As the larger MSG is not sent to the entire network, MuON
substantially reduces the bandwidth usage. Also, since mul-
tiple nodes within the network receive MSG (all the shaded
nodes), multiple nodes are potential receivers and senders of
MSG, giving MuON its anonymity guarantees. MuON de-
rives its properties of reliability and bounded latencies from
its epidemic nature.

Every node running MuON maintains two buffers; one
to store the message headers (called headerBuffer) and the
other to store the corresponding messages (called message-
Buffer). Every node tracks the number of protocol rounds
each header has been gossiped (called the gossipCount).
Algorithm 1 describes the details for handling these buffers.
Algorithm 2 explains the protocol executed by each node af-
ter every Tinterval units of time. This algorithm describes
an epidemic protocol for disseminating the headers. Each
node selects FanOut random nodes from the group as gos-
sip targets and sends them a list with each message header
MSG HDR currently within headerBuffer. As given in algo-
rithm 3, whenever A gets the message, A tries to decrypt2

the message. If A can decrypt the message, it indicates
that the message was intended for A and thus A contacts
cur rOw ne r and pulls the message. In this case A also gos-
sips with its neighbors that it has the message to send. Thus
the responder in MuON behaves exactly the same as any
other node in the network (with the exception that it always
pulls the message). If A cannot decrypt the message then
A performs one of two actions: it may just add the header
to its header buffer or with some probability pinter it may
go back and get the corresponding MSG from B. In the
first case, A gossips with its neighbors that B currently has
the message. In the second case, when A gets the MSG
from B, it changes the cur rOw ne r field of MSG HDR to
A. Thus when A gossips the header, it will indicate itself
as the owner of the message. With this property, MuON

2If the decrypted message contains an expected value such as a known
identifier or public key, the node can conclude ” successful” decryption

achieves its anonymity guarantees as there are potentially
many owners of the same message.

4.4. Initiator and Responder Communication

While the message sending protocol of MuON helps
achieve anonymity, cryptographic measures are required
to ensure message integrity and confidentiality. This
subsection describes how the dissemination protocol is
used by initiators and responders for secure anonymous
communication.

Sending a request: The following steps are performed,
when an initiator I sends a request for service S. Let d ata
represent information contained in the request message and
id be an application specific message identifier.

1. I generates a symmetric session key ksession, which is used
to encrypt all data messages.

2. I generates a nonce r1, which is used to correlate responses
with this request.

3. Using the PKI, I obtains the public key k+
s associated with

the service S.

4. The MSG is generated as {r1, id, data}ksession.

5. I creates a header hdr, corresponding to MSG as hdr =
{r1, ksession, k+

I
, {H(D)}k−

I
}k+

s where
D = {r1, ksession, k+

I
,MSG }.

6. I now invokes sendMessage(hdr,MSG) (Algorithm 1).

Responding to a request: Algorithm 3 ultimately delivers
MSG HDR and MSG to the peer providing the service S. Let
some node R provide the service S. Suppose R receives
h d r and its corresponding MSG. R proceeds with the fol-
lowing steps.

1. R decrypts hdr using k−

s , to obtain ksession, r1 and the ini-
tiator’s public key k+

I
. R now runs integrity checks with the

cryptographic hash.

2. Using ksession, R decrypts MSG to recover the request.

3. Let re s po ns e be the corresponding reply, which R needs
to send to I . R creates MSG = {r1, id, re po ns e}ksession.
Here ksession and r1 are sent by the initiator and recovered
by R in step 1.

4. R creates a header hdr corresponding to the response as
hdr = {r1, {H(D)}k−

S
}k+

I
, where D = {r1,MSG}.

5. R now invokes sendMessage(hdr,MSG) (Algorithm 1).

5. Evaluation

In this section, we evaluate the performance, anonymity
and other security guarantees of MuON. We first study the
impact of overlay size and churn on the various perfor-
mance metrics of MuON. We then evaluate the anonymity
and other security guarantees of the protocol.

5.1. Performance Evaluation

Measurement studies of unstructured P2P networks
[5, 28, 30] indicate that these systems exhibit dynamic
membership, because peers alternately join and leave the
network. Peers participate in the protocol only during the
time between joining and leaving the network. This time is
called the session time and the resultant dynamism is called
the network churn. The network churn is related to the
average session time of the peers within the network. As
the average session time decreases, the membership of the
P2P network changes at a faster rate and is said to exhibit a
higher churn [20, 26]. Prior experiences [8, 20, 26] indicate
that network churn impacts the performance of protocols
over P2P networks. Hence we evaluate MuON by simulat-
ing the protocol over unstructured P2P networks of varying
sizes and varying churn. We model network churn using
an approach similar to that described by Liben-Nowell et
al. [21]. This model has also been used for evaluating
distributed hash tables over P2P networks [20, 26]. Peers
within the network are assigned exponentially distributed
session times. When a peer reaches the end of its session
time, it leaves the network. Prior work [16] has shown
that the average session time (amount of churn) within a
network depends on the application. Since MuON is not
specific to any application, we simulate networks with
varying churn (session time).

We simulate MuON using PeerSim [19], a P2P simulator
designed specifically for epidemic protocols. The simulator
executes the protocol in a series of cycles, where the time
interval between each cycle is assumed to be sufficient for
unidirectional unreliable (UDP) message transmission with
a loss rate of 5%. In our simulation model, a network with
churn 0 is a static network, which does not change during
the simulation. At churn 0, the average session time was
chosen as 150 cycles (a factor of 10 over the maximum time
for one run of the protocol), to enable simulation of several
rounds of MuON simultaneously. An increase of 0.1 in
network churn decreases the average session time of the
nodes by a factor of 1

10
. When a node leaves the network,

it is replaced by a new node, thus keeping the overlay size
constant. This helps us to understand the impact of overlay
size and churn independently.

The simulations are used to study the impact of in-
creasing overlay size and churn on the various protocol
metrics. In the simulation FanOut and GC are maintained
at log2(overlay size) and Tinterval is maintained at 1
cycle. These parameters are common to all epidemic
protocols and do not impact anonymity guarantees. Their
impact on performance is similar to that determined by
previous studies [6] and is reported in [2]. The impact of
intermediate probability pinter is studied in section 5.2.
Unless specified, the value of pinter is assumed to be 0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Delivary Ratio

Delivary ratio of MuON

Overlay Size
Churn

Delivary Ratio

Figure 3. Reliability of MuON

Reliability The reliability of MuON is measured
by the delivery ratio achieved in networks of varying sizes
and churn. The delivery ratio is the fraction of the sent
requests that were ultimately delivered at the final destina-

tion. Thus delivaryratio =
number of requests delivered

number of requests sent .
When delivery ratio is one, it indicates that all requests that
were sent were eventually delivered at their destination,
thus indicating reliable communication.

Figure 3 shows the delivery ratio for networks with
varying sizes and churn. It can be seen that MuON
maintains a high delivery ratio of almost one, independent
of the overlay size and churn. This high reliability indicates
its suitability for highly dynamic P2P networks.

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0.2

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0.5

 0

 5

 10

 15

 20

 25

 30

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

C
yc

le
s

Overlay Size

Churn 0.9

Figure 4. Latency for message delivery

Bounded Latency One of the goals of MuON is
to achieve communication within a predictably bounded
time interval. This characteristic is important from the
application’s point of view; shorter latencies are important
for application interactivity while bounded latencies are
needed by applications to set timeouts and detect message

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0

Avg. Header Messages
Avg. Data Messages

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.2

Avg. Header Messages
Avg. Data Messages

 0

 1

 2

 3

 4

 5

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.5

Avg. Header Messages
Avg. Data Messages

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.9

Avg. Header Messages
Avg. Data Messages

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

M
es

sa
ge

s/
N

od
e

Overlay Size

Churn 0.9

Avg. Header Messages
Avg. Data Messages

Figure 5. Messages processed on each node

losses. Since MuON operates over an overlay network, we
measure the latency in terms of number of protocol cycles
required for the message to be delivered at its destination.

Figure 4 shows the average number of cycles required
for messages to be delivered; the bars indicate the variation
in the delivery latency. It can be seen that the delivery
latency is almost constant irrespective of the overlay size
and churn, indicating that the latencies provided by MuON
are predictable and bounded.

Resource Consumption When a peer joins MuON, it
contributes some of its resources to help forward messages
from other peers. Hence we study the amount of resources a
peer has to expend, to help other peers achieve anonymity.

In MuON, a peer needs resources to send, encrypt,
decrypt and store messages. In general, the resources
consumed by a node are directly proportional to the
number of messages (header and data) it has to process.
Figure 5 shows the average number of headers and data
messages that are processed on each peer, whenever some
peer sends an anonymous message. It can be seen that
irrespective of the overlay size and churn, the number of
header messages processed is bounded and relatively low.
The graph also indicates that each peer has to process very
few data messages. Header messages are small in size and
thus the processing overhead for each header, storage and
bandwidth is low. MuON uses private/public key encryp-
tion for small headers and faster symmetric cryptography
for large data messages, to reduce the encryption overhead.

Comparative Bandwidth Use MuON’s message
sending protocol has been designed to use low bandwidth
as compared to previous multicast-based anonymity proto-
cols. Let H D Rsize and D ATAsize be the size of header
and data messages respectively and N be the number
of nodes within the overlay. Consider the bandwidth
consumed when one data message is sent anonymously.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2000 4000 6000 8000 10000 12000 14000

N
um

be
r o

f D
at

a
M

es
sa

ge
s

Overlay Size

Churn 0

Multicast
MuON, pinter=0.8
MuON, pinter=0.5
MuON, pinter=0.3

Figure 6. Comparative Bandwidth Use

A multicast-based anonymity protocol will multicast this
message to N nodes. Hence the bandwidth consumed will
be at least N ∗ DATAsize. Note that this is a conservative
estimate, since it ignores the bandwidth consumed by con-
trol messages and data message re-transmissions required
in the presence of network churn. On the other hand,
MuON disseminates the data message to only a subset of
nodes within the overlay, ensuring that the final destination
is a member of this subset. Let β be the size of the subset of
nodes that receive the message. The bandwidth consumed
in MuON is k ∗ N ∗ HDRsize + β ∗ DATAsize, where
k is the number of headers processed by each node. Since
Figure 5 indicates that the value of k is low and HDRsize

is small3, we approximate the bandwidth consumed as
β ∗DATAsize. The value of β depends on the intermediate
probability pinter. We generated figure 6 by simulation,
which indicates the value of β with values of pinter of
0.3, 0.5 and 0.8. The value of N is also shown for clarity.
It can be seen that the value of β is always lower than
N , indicating that MuON would use lower bandwidth
compared to other multicast-based approaches. It is also
interesting to note that as the value of pinter decreases, the
bandwidth consumption decreases.

Scalability An important characteristic that is evident
from the results presented above, is the scalability of
MuON. The protocol’s reliability, latency bounds and re-
source consumption are almost constant irrespective of the
overlay size and churn.

3Considering 128 bit cryptographic hash, 128 bit cryptographic keys,
32 bit IP addresses and 32 bit nonce, the maximum size of hdr is 416 bits
and H D R size = 576 bits (72 bytes). If the data being transferred is a
1 MB media file then D A T A size = 1 0 4 8 576 bytes. For an overlay of
size 1 0 , 0 0 0 at churn 0, k = 1 2 from figure 5 and β = 3 0 0 0 from figure
6. Hence the volume of MuON header messages is 8 4 3 7.5K B and the
volume of MuON data messages is 3 0 72 0 0 0 K B .

5.2. Anonymity Guarantees

In this section, we first discuss how MuON achieves
mutual anonymity and the parameters that impact it. We
then evaluate the anonymity guarantees by describing the
protocol behavior under various attacks from the adversary.

Mutual Anonymity in MuON Similar to anonymity
protocols that use multicasting [29] or broadcasting [31],
MuON achieves mutual anonymity on the virtue that
several intermediate peers receive the messages. When
an intermediate node receives a MSG, it gossips the
corresponding MSG HDR with itself as the owner. From
an observer’s perspective, any node claiming to be the
current owner could be the actual sender of the message.
Similarly, when an intermediate node receives MSG HDR, it
pulls the corresponding MSG with a probability of pinter.
Thus from the observer’s perspective, any intermediate
node that eventually receives the MSG could potentially be
the receiver. Thus in the protocol, an observer (initiator,
responder or intermediate node) cannot differentiate the
initiator and responder from the other peers. The use of
public keys also enables the initiator and responder to
communicate without knowing the identity of each other.
Thus mutual anonymity and unlinkability is achieved.

Impact of Intermediate Probability The degree
of anonymity provided by multicast based anonymity
systems depends on the number of nodes that have an
equiprobable chance of playing a certain role (initia-
tor/responder). Let S (called the anonymity set) denote the
set of nodes that have an equiprobable chance of being the
initiator/responder in a system. Shields et al. [32] show
that the degree of anonymity in the system is 1 − 1

|S| .
In MuON, for a given communicating pair of initia-

tor and responder, any node that receives MSG has an
equiprobable chance of being the initiator or responder.
Hence the anonymity set is the set containing all nodes that
receive MSG. Using simulations, we measured the size of
the anonymity set for a given MSG, when it is delivered
at its destination. Figure 7 shows the average size of the
anonymity set expressed as percentage of nodes within the
overlay that received a given MSG. It can be seen that the
anonymity set increases with increasing values of pinter.
However, for a given value of pinter, the anonymity set
remains fairly constant independent of the churn within
the network. This indicates that the degree of anonymity
provided by MuON is independent of the network churn.

The anonymity set (and hence the degree of anonymity
provided by MuON) and the bandwidth consumed (Figure
6) increase as the value of pinter increases. Thus when
pinter is 1, the protocol would provide the maximum
degree of anonymity. However, the protocol will perform

a multicast and thus the bandwidth consumption would
be maximized. On the other hand, when pinter = 0
the protocol performs a unicast, resulting in minimum
anonymity and the bandwidth consumed would be mini-
mized. Thus pinter represents a tradeoff4 within MuON
between performance and anonymity.

 0

 5

 10

 15

 20

 25

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 20

 40

 60

 80

 100

Anonymity Set
 (% of overlay size)

Anonymity Set with Intermediate Probability 0.3

Anonymity Set

Overlay Size
Churn

Anonymity Set
 (% of overlay size)

 0
 5
 10
 15
 20
 25
 30
 35
 40

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 20

 40

 60

 80

 100

Anonymity Set
 (% of overlay size)

Anonymity Set with Intermediate Probability 0.5

Anonymity Set

Overlay Size
Churn

Anonymity Set
 (% of overlay size)

 0

 10

 20

 30

 40

 50

 60

co
lo

ur
 g

ra
di

en
t

 2000
 4000

 6000
 8000

 10000
 12000

 14000

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 20

 40

 60

 80

 100

Anonymity Set
 (% of overlay size)

Anonymity Set with Intermediate Probability 0.8

Anonymity Set

Overlay Size
Churn

Anonymity Set
 (% of overlay size)

Figure 7. Impact of Intermediate Probability

Attacks by Adversary Anonymity protocols are
susceptible to several possible attacks. However, the
successful completion of these attacks may require the
adversary to utilize varying amounts of resources. To
evaluate the anonymity guarantees of MuON, we describe

4The degree of anonymity decreases gradually with pinter . Consider a
network of 10,000 nodes with churn 0. If pinter = 1 then |S| = 10, 000

and degree of anonymity is 0.9 9 9 9 . From figure 7, if pinter = 0.8 then
|S| = 0.50 ∗ 10, 000 and degree of anonymity is 0.9 9 9 8.

various attacks and describe MuON’s behavior under
attack. It can be seen that though some attacks are possible
against MuON, the resources required by the adversary to
successfully complete the attack are substantial.

Local eavesdropper: A local eavesdropper is an ad-
versary that is able to monitor all communications sent to
or received from one particular protocol participant. This
adversary tries to detect the identity of communicating
parties by recording and comparing all incoming and
outgoing messages of a particular node. In MuON a local
eavesdropper on an intermediate node, cannot confirm the
identities of the communicating parties, even if the message
and its header are received by the intermediate node. This
is because the header and message do not contain any form
of identification of initiator and responder.

Collusion Attack: In a collusion attack, nodes within the
system collaborate to identify the communicating entities.
It has been seen that the degree of anonymity in MuON is
1 − 1

|S| where S is the anonymity set. This implies that as
long as a single intermediate node within the anonymity
set does not collaborate, it is hard for colluding nodes to
differentiate with certainty, the initiator, responder and
the honest intermediate nodes from one another. If all |S|
nodes within the anonymity set collaborate, the degree of
anonymity provided by MuON becomes 0 and the identities
of the communicating parties can be revealed. However,
since the anonymity set changes for every MSG exchanged
between the initiator and responder, all nodes in the
network must collaborate to launch this attack successfully.

Timing attack: In a timing attack, the adversary (behav-
ing as an initiator) attempts to identify the responder by
analyzing the round trip time (RTT) of a request, since short
RTT indicates that the responder is nearby. In MuON since
the messages are transferred over the overlay network,
RTT measurements do not refl ect actual network locations.
Thus launching a timing attack is difficult. An adversary
can launch a variant of the timing attack against MuON, by
identifing the initiator as the first node to gossip a particular
MSG. To launch this attack, the adversary would have to
trace outgoing messages of every node within the network,
to identify a particular node as the first node to gossip a
message. However in this attack, the adversary cannot
identify the responder, since the responder behaves like an
intermediate node and continues to gossip the MSG.

Traceback attacks: There are two kinds of traceback at-
tacks: passive traceback and active traceback. In a passive
traceback attack, the adversary examines the stored routing
state of the peers to identify the path(s) between initiator
and responder. To launch a passive traceback against
MuON, the adversary needs to look at the application
level message buffers at every node within the network.
However, since the messages are periodically removed
from the buffers, to perform a successful traceback the

adversary must collect the information before it is removed.
In an active traceback attack, the adversary has control of
the network infrastructure and is able to follow an active
and continuing stream of packets back through the network
to their point of origin. In MuON, such an adversary can
identify the sender of a message (it is the starting point of
the message paths). However, the recipient is not revealed
(since paths do not terminate at the recipient).

Predecessor attacks: These attacks occur if the same
path is used by the initiator while communicating to the
responder. If a compromised node records its predecessor,
then most of the time the initiator will be the predecessor.
However in MuON as every node randomly picks up the
gossip target, different messages follow different paths.
Hence this type of attack is not possible in MuON.

Message volume attack: An adversary can differentiate
responders from other nodes by observing the volume
of data transmitted, since initiators generate less data as
compared to responders. This attack is possible against
MuON, if the adversary is a global adversary and can
observe the traffic generated by each node in the network.

Intersection Attack: This attack can be launched by a
global adversary, who can observe all the various com-
munication paths within the network. The initiator and
responder will always be on the communication path, and
the intersection of these paths would reveal the identity of
the initiator and responder. Like several other anonymity
protocols, MuON is vulnerable to intersection attacks.

In summary, we see that MuON can resist most kinds
of attacks in the absence of a global adversary. We believe
that such an adversary is impractical for large and dynamic
P2P systems, though many of these attacks can be thwarted
by means of cover traffic [4].

5.3. Security Guarantees

In MuON, message confidentiality and integrity are
achieved using cryptographic techniques such as crypto-
graphic hash, public/private keys and session keys. Hence
these guarantees are constrained by the strengths of the
cryptographic algorithms actually used.

When the initiator sends the request, it generates a nonce
r1 and a session key ksession. The initiator then generates a
header containing the nonce, session key and the initiator’s
public key. The header is then encrypted using the respon-
der’s public key. Similarly, the responder includes the nonce
in the header for the response and encrypts this header with
the initiator’s public key. Thus the nonce and session key al-
ways remain confidential. MSG always encrypts the data and
nonce, using the session key. Since the session keys are not
reused, encrypting the data with session keys helps thwart
dictionary attacks. Thus confidentiality is maintained.

The header, hdr always contains a cryptographic hash

signed by the private key of the sender (initiator in case of
requests and responder in case of responses). The crypto-
graphic hash is computed over MSG and the required fields
of hdr and is signed by the sender’s private key. This
signed cryptographic hash has several uses. It allows the
receiver to verify the correspondence between a given MSG
and its MSG HDR. The signed cryptographic hash helps the
receiver detect if an adversary changed the contents of the
message or the nonce. Similarly, when an initiator receives
a response, the initiator can verify that the response origi-
nated from the responder, because the cryptographic hash
is signed by the responder’s private key. Thus an adversary
cannot masquerade as the responder. Likewise, the nonce
contained within each header and data message can be used
by the initiator to detect a replay of a response. Likewise,
if the responder keeps track of nonce values of the past re-
quests, it can detect the replay of requests.

6. Conclusion and Future Work

We have presented MuON, a protocol for providing mu-
tual anonymity in dynamic P2P networks. The contribu-
tions of MuON are twofold; the protocol provides reliable
mutually anonymous communication over dynamic P2P
networks, while maintaining low bandwidth and processing
overhead; and it exhibits application friendly characteris-
tics such as bounded communication latency and message
integrity and confidentiality. Since network outages can be
modeled as churn, we believe that MuON provides resilient
communication between initiator and responder.

In the future, we plan to incorporate a cover traffic
scheme in order to enhance MuON’s anonymity guarantees.
We also plan to investigate the use of MuON for creating
censorship resistant services and ’Denial-of-Service’ (DoS)
resistant services.

References

[1] The anonymizer, http://anonymizer.com/.
[2] N. Bansod, A. Malgi, B. K. Choi, and J. Mayo. MuON:

Epidemic based Mutual Anonymity. Technical Report CS-
TR-05-02, Michigan Technological University, Houghton,
MI, June 2005.

[3] K. Bennett and C. Grothoff. GAP-practical anonymous
networking. In PET’03: Privacy Enhancing Technologies
Workshop, pages 141–160, Dresden, Germany, Mar. 2003.

[4] O. Berthold and H. Langos. Dummy Traffic against Long
Term Intersection Attacks. In PET’02: Proc. of Privacy En-
hancing Technologies workshop, pages 110–128, Apr. 2002.

[5] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding
availability. In IPTPS ’03: Proceedings of the 2nd Interna-
tional Workshop on P2P Systems, Feb 2003.

[6] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and
Y. Minsky. Bimodal multicast. ACM Transactions Computer
Systems, 17(2):41–88, May 1999.

[7] D. Chaum. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Comm. ACM, 24(2):84–90, 1981.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P Systems Scalable.
In SIGCOMM ’03: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 407–418, Aug. 2003.

[9] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion:
Design of a Type III Anonymous Remailer Protocol. In SP
’03: Proceedings of the 2003 IEEE Symposium on Security
and Privacy, pages 2–15, Berkeley, CA, 2003.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenkcr, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
PODC ’87: Proceedings of the 6th annual ACM Symp. on
Principles of Distributed Computing, pages 1–12, Vancou-
ver, British Columbia, Canada, Aug. 1987.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Security ’04: Proceed-
ings of the 13th USENIX Security Symposium, pages 303–
320, San Diego, CA, Aug. 2004.

[12] M. Freedman and R. Morris. Tarzan: A Peer-to-Peer
Anonymizing Network Layer. In Proceedings of the 9th
ACM conference on Computer and Communications Secu-
rity, pages 193–206, Washington, DC, Nov 2002.

[13] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and
A. Mayer. Consistent, yet anonymous, web access with
LPWA. Communications of ACM, 42(2):42–47, 1999.

[14] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. Peer-to-
Peer Membership Management for Gossip-Based Protocols.
IEEE Trans. on Computers, 52(2):139–149, Feb. 2003.

[15] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. In
NDSS ’96: Proc. of the Network and Distributed System Se-
curity Symposium, pages 2–16, San Diego, CA, Feb. 1996.

[16] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, Modeling, and Analy-
sis of a Peer-to-Peer File-sharing Workload. In SOSP ’03:
Proceedings of the nineteenth ACM Symposium on Operat-
ing Systems Principles, pages 314–329, Oct 2003.

[17] I. Gupta, K. Birman, and R. Renesse. Fighting Fire With
Fire: Using Randomized Gossip To Combat Stochastic Scal-
ability Limits. Journal on Quality and Reliability Engineer-
ing International, 29(8):165–184, May 2002.

[18] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen. The Peer Sampling Service: Experimental evalua-
tion of unstructured gossip-based implementations. In Mid-
dleware 2004: Proc. of the 5th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, pages 79–98, Oct. 2004.

[19] M. Jelasity, A. Montresor, and O. Babaoglu. A modular
paradigm for building self-organizing peer-to-peer applica-
tions. In Engineering Self-Organising Systems, pages 265–
282, July 2003.

[20] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M.
Gil. A performance vs. cost framework for evaluating DHT
design tradeoffs under churn. In Proceedings of the 24th
Infocom, Miami, FL, March 2005.

[21] D. Liben-Nowell, H. Balakrishnan, and D. Karger. ” analy-
sis of the evolution of peer-to-peer systems” . In PODC ’02:
Proceedings of the Twenty-first Annual Symposium on Prin-
ciples of Distributed Computing, pages 233–242, July 2002.

[22] A. Pfitzmann and M. Waidner. Networks without user ob-
servability. Computers and Security, 6(2):158–166, 1987.

[23] M. Portmann and A. Seneviratne. Cost-effective Broadcast
for Fully Decentralized Peer-to-Peer Networks. Journal of
Computer Communications, 26(11):1159–1167, 2003.

[24] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous Connections and Onion Routing. IEEE Journal on Se-
lected Areas in Communications, 16(4):482–493, May 1998.

[25] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web
Transactions. ACM Transactions on Information and System
Security, 1(1):66–92, Nov. 1998.

[26] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In USENIX ’04: Proc. of the 2004 USENIX
Annual Technical Conference, pages 127–140, 2004.

[27] M. Ripeanu and I. T. Foster. Mapping the Gnutella Net-
work: Macroscopic Properties of Large-Scale Peer-to-Peer
Systems. In IPTPS’01: In Proceedings of the 1st Inter-
national Workshop on Peer-to-Peer Systems, pages 85–93,
Cambridge, MA, 2002.

[28] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In MMCN
’02: Proceedings of Multimedia Computing and Networking
2002, San Jose, CA, Jan. 2002.

[29] V. Scarlata, B. N. Levine, and C. Shields. Responder
Anonymity and Anonymous Peer-to-Peer File Sharing. In
ICNP’01: The Ninth International Conference on Network
Protocols, pages 272–280, Riverside, CA, Nov. 2001.

[30] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks. IEEE/ACM Transactions Networking,
12(2):219–232, Apr. 2004.

[31] R. Sherwood, B. Bhattacharjee, and A. Srinivasan. P5: A
Protocol for Scalable Anonymous Communication. In Pro-
ceedings of the 2002 IEEE Symposium on Security and Pri-
vacy, pages 58–70, Berkeley, CA, May 2002.

[32] C. Shields and B. N. Levine. A Protocol for Anonymous
Communication over the Internet. In Proceedings of the 7th
ACM conference on Computer and Communications secu-
rity, pages 33–42, Athens, Greece, 2000.

[33] S. Tanaraksiritavorn and S. Mishra. Evaluation of Gossip
to Build Scalable and Reliable Multicast Protocols. Perfor-
mance Evaluation, 58(2+3):189–214, Nov. 2004.

[34] W. Vogels, R. van Renesse, and K. Birman. The power of
epidemics: Robust communication for large-scale distrib-
uted systems. ACM SIGCOMM Computer Communication
Review, 33(1):131–135, 2003.

[35] B. R. Waters, E. W. Felten, and A. Sahai. Receiver
Anonymity via Incomparable Public Keys. In Proceedings
of the 10th ACM Conference on Computer and Communica-
tion Security, pages 112–121, Washington, DC, 2003.

[36] L. Xiao, Z. Xu, and X. Zhang. Low-Cost and Reliable Mu-
tual Anonymity Protocols in Peer-to-Peer Networks. IEEE
Transactions on Parallel and Distributed Systems, 14(9):829
– 840, Sept. 2003.

[37] Y. Zhu and Y. Hu. TAP: A Novel Tunneling Approach for
Anonymity in Structured P2P Systems. In ICPP’04: Inter-
national Conference on Parallel Processing, pages 21–28,
Montreal, Canada, Aug. 2004.

