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Abstract

In unstructured peer-to-peer networks, controlled flood-
ing aims at locating an item at the minimum message cost.
Dynamic querying is a new controlled flooding technique.
While it is implemented in some peer-to-peer networks, lit-
tle is known about its undesirable behavior and little is
known about its general usefulness in unstructured peer-
to-peer networks. This paper describes the first evaluation
and analysis of such techniques, and proposes novel tech-
niques to improve them. We make three contributions. First,
we find the current dynamic querying design is flawed. Al-
though it is advantageous over the expanding ring algo-
rithm in terms of search cost, it is much less attractive in
terms of peer perceived latency, and its strict constraints on
network connectivity prevent it from being widely adopted.
Second, we propose an enhanced flooding technique which
requires the search cost close to the minimum, reduces the
search latency by more than four times, and loosens the con-
straints on the network connectivity. Thus, we make such
techniques useful for the general unstructured peer-to-peer
networks. Third, we show that our proposal requires only
minor modifications to the existing search mechanisms and
can be incrementally deployed in peer-to-peer networks.

1. Introduction

Peer-to-peer networks such as Gnutella, KaZaA, and
BitTorrent have emerged as a new Internet computing
paradigm over the past few years. A significant portion of
Internet traffic is from peer-to-peer applications [12]. In un-
structured peer-to-peer networks, searching for an item in-
curs high query traffic because the networks do not offer any
directory service and they are often constructed in a random
fashion. One feasible solution is flooding based search. To
that end, two such techniques have been adopted.

One of them is the expanding ring algorithm [11, 5, 2, 3]
adopted by many unstructured networks. It is also called
TTL based controlled flooding. Briefly, this algorithm

works as follows. The source of the search first chooses
a small initial TTL value. It sends query packets towards all
its immediate neighbors with the TTL value as a field in the
packets. If a copy of the searched item is hit in a neighbor,
this neighbor replies the source. The neighbor then decre-
ments the TTL value by one and forwards the query packet
to its other neighbors. This forwarding continues until the
TTL field has become zero. If after one round of flooding,
the source has not received the desired number of results, it
may start with a new round of flooding with a larger TTL
value. There could be multiple rounds of flooding before
enough results are found or the source gives up. The other
one is dynamic querying like techniques such as the one [7]
adopted by the Gnutella network. Briefly, it works as fol-
lows. The source peer first sends query packets towards a
few neighbors with a small TTL value. The purpose of this
probe phase is to have an initial estimate of the popularity of
the searched item. Then an iterative process takes place. In
each iteration, (1) the source peer estimates the number of
peers to be contacted in order to obtain the desired number
of results; (2) then it calculates the TTL of the query packet
to be sent to the next neighbor; (3) finally it propagates the
query packet towards this neighbor. This iterative process
stops when the desired number of results are returned, or
all neighbors have been visited. Intuitively, this flooding
algorithm is dynamic in that the source estimates the item
popularity and adjusts the TTL value accordingly.

While the expanding ring algorithm is well studied, little
is known about the dynamic flooding techniques. An eval-
uation and analysis of such techniques is necessary for us
to understand both its desirable and undesirable behaviors,
and is necessary before we can adopt such techniques in
the general unstructured peer-to-peer networks. In this pa-
per, we look into the details of such techniques and evaluate
them in the representative Gnutella peer-to-peer network.
We make three contributions: (1) We find the design of the
existing dynamic querying technique is flawed. Although it
is better in minimizing search cost, it drastically increases
the latency perceived by the peers. Moreover, this technique
makes a strong assumption on the network topology. This



prevents the technique from being widely adopted. (2) We
propose and evaluate a new technique to reduce the high
latency. It requires search cost close to the minimum, elimi-
nates the excessive latency, and also loosens the constraints
on the network connectivity. Thus, dynamic querying like
flooding techniques can be used by the general unstructured
peer-to-peer networks. (3) We discuss the implementation
and deployment issues related to our proposal. We show
our enhancement requires minor or no modifications to the
existing peer software in peer-to-peer networks, and can be
deployed incrementally.

The rest of the paper is organized as follows. Section 2
briefly describes related work on search algorithms in un-
structured peer-to-peer networks. Section 3 enumerates a
set of performance requirements on search algorithms. Sec-
tion 4 describes the existing dynamic querying technique
and presents a performance comparison to the expanding
ring algorithm. Section 5 presents our enhancing technique
and demonstrates its effectiveness in eliminating the high
latency and loosening the constraints on network connectiv-
ity. We then discuss the issues related to its implementation
and deployment. Section 7 concludes the paper.

2. Related Work

The algorithms considered in this paper fall into the cat-
egory of flooding based search algorithms. More specifi-
cally, they are all controlled flooding algorithms. Within the
context of peer-to-peer networks, several studies [11, 16]
have compared the performance of the expanding ring al-
gorithm (called iterative deepening in [16]) and other con-
trolled flooding algorithms. Within the context of wireless
ad hoc networks, several studies [5, 2, 3] have empirically
or analytically investigated the performance of the expand-
ing ring algorithm, and in particular [2, 3] have proposed
randomized algorithms to reduce search cost without con-
sidering the search latency.

Another category of search algorithms is random walk
based techniques. They have been studied in [11, 6, 1, 13,
8, 9], in the general context of unstructured networks (in-
cluding peer-to-peer networks, sensor networks, and wire-
less ad hoc networks). For example, [4] proposed to use
a biased random walk based technique to direct queries to
high-capacity nodes in the Gnutella network, and hence,
to increase the chance of finding the wanted item. There
is usually a tradeoff between flooding based and random
walk based techniques. Random walk based techniques re-
sult in much higher latency than flooding based techniques.
For energy-constrained networks such as sensor networks,
random walks are considered good choices. However, in
peer-to-peer networks, a long search latency results in bad
user experiences. Although multiple random walkers can
be used as proposed by [11], they achieve short latency at
the price of increased search cost.

Another approach to making unstructured peer-to-peer
networks more efficient and scalable is to modify the archi-
tecture [17, 10]. For example, both KaZaA and Gnutella
currently have hierarchical architectures. A smaller number
of upper level peers (supernodes in KaZaA and ultrapeers
in Gnutella) are responsible for propagating and answering
queries for more lower level peers. Nevertheless, efficient
search algorithms for the upper level peers are still key to
such hierarchical peer-to-peer networks.

3. Problem Statement and Goals

In peer-to-peer networks, search for an item works as
follows. A peer accepts queries from the user. Each query
includes one or more keywords and it specifies the desired
number of results. Then the peer initiates a search process
to discover the desired number of results that match the key-
words. To do this, the peer propagates query packets (which
include the keywords) towards other peers in the networks.
Any result matching the keywords causes a reply message
from the corresponding peer to the initiating peer. Finally
the initiating peer returns the obtained results to the user.

In unstructured peer-to-peer networks, search is blind
and expensive, since there is no central servers to maintain
a directory, and the network is constructed in an often ran-
dom fashion that it does not provide any clues to facilitate
search. Usually, the only feasible solution is flooding based
search. Significant network traffic may be generated due to
search. Therefore, good search algorithms are key to the
success of such networks.

To evaluate search algorithms, it is necessary to first
specify a set of requirements (goals). To illustrate these
goals, let us consider the search process of discovering the
desired number of matching results. Figure 1 shows the
progress of two search processes when time elapses. First,
a search algorithm should be deterministic in that, it will re-
turn the desired number of results when there are abundant
copies of the searched item in the network. In the figure
we show that the two search processes rise above the target
line. However, bad search algorithms may stop the search
processes prematurely and fail to satisfy the queries. Sec-
ond, a good search algorithm should be able to minimize
the search cost, whereas the search cost is often defined as
the total volume of query traffic. To achieve this goal, the
algorithm should have two properties: (1) causing small or
no overshooting of the number of returned results, and (2)
having a low per-result cost. Bad search algorithms may
cause heavy query traffic (either because they obtain too
many results or because their per-result cost is too high).
Third, a good search algorithm should return the results in
a timely manner, i.e. the rising time of the search process
should be short. Search latency is important for user sat-
isfaction. To summarize, an ideal search algorithm should
return the desired number of results at the lowest search cost



and lowest latency. Figure 1 shows the first search process
achieves these goals better than the second process does, as
it has smaller overshooting and lower latency, although both
reach the target line.
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Figure 1. An intuitive example showing the re-
quirements on search algorithms in unstruc-
tured peer-to-peer networks.

In general these three goals often conflict with each
other. In order to guarantee the number of results and to
minimize the search latency, unrestricted flooding (to all
peers in the entire network) is the best choice. However, its
search cost (query traffic) is extremely high. On the other
hand, in order to minimize the search cost, an algorithm
should avoid overshooting and be more conservative. Thus
it may cause excessive search latency, and even not be able
to return the desired number of results before stopping.

4. Evaluating Dynamic Querying like Flooding

This section describes the Gnutella dynamic querying
technique as an example, and presents a performance com-
parison to the TTL based expanding ring algorithm. This
helps us understand both the good and the bad aspects of
dynamic querying like flooding techniques.

4.1. Dynamic Querying in Gnutella

In modern Gnutella peer-to-peer network, there are two
types of peers, ultrapeers and leaf peers. The ultrapeers
manage the search process for their leaves and forward
query packets from other ultrapeers. Hereafter, a peer refers
to an ultrapeer when the discussion is about Gnutella. When
a peer receives a search request, it will propagate the query
to the network using the dynamic querying protocol [7].
This protocol works in a more conservative way than the
previous expanding ring algorithm. It seeks to hit the mini-
mum number of peers necessary to obtain the desired num-
ber of results for a given search. The general process is
described as follows.

The source peer starts by sending a probe query via a
few neighbors with a small TTL. The purpose of this probe

phase is to have an initial estimate of the popularity of the
searched item. Once the probe is sent, the standard algo-
rithm takes effect. Assume the probe does not achieve the
desired number of results. The source peer will begin an
iterative process of dynamically calculating the TTL for the
remaining neighbors.

In each iteration, the source peer has the current number
of returned results. It estimates the number of peers theo-
retically queried so far, called theoretical horizon, and the
theoretical popularity of the searched item. Then the source
peer can estimate how many more peers should be contacted
in order to receive the desired number of results. This esti-
mate is divided by the number of remaining neighbors. In
this way, the source peer obtains the number of peers to
query via the next neighbor. Since the degree of the next
neighbor can be known, the source peer can estimate the
minimum TTL to reach the desired number of peers. The
source peer then sends the query down this neighbor using
this TTL value, and waits for the results until a timeout.
This iterative process continues until all neighbors are used,
or the peer obtains the desired number of results.

Intuitively, this technique offers a way to dynamically
adjust the TTL value of outgoing query packets along each
additional neighbor to hit only the necessary number of
peers to obtain the desired number of results. The benefits
in reducing the search cost are two-fold. First, this tech-
nique avoids sending query packets too far (towards too
many peers). Second, it avoids sending query packets re-
peatedly to the same subset of peers. However, the existing
design of this technique is proposed in a very ad hoc fash-
ion and has not been validated. An evaluation and analysis
is necessary for us to understand both its desirable and un-
desirable behaviors, and it is necessary before we adopt dy-
namic querying like techniques in the general peer-to-peer
networks.

4.2. Evaluation Methodology

We use three metrics to compare the performance of dif-
ferent flooding algorithms. These metrics are consistent
with the requirements in Section 3. (1) The first is the num-
ber of returned results. The source peer is asked to dis-
cover a certain number of results. A good flooding algo-
rithm should return at least close to that number of results.
(2) The second metric is the total number of query packets
transmitted by all peers. Often this number is higher when
the source peer finds more results. A related metric is the
average number of query packets transmitted per result. (3)
The third metric is the total latency of the search process.
Excessive latency is not acceptable to the end users.

We use a snapshot of the Gnutella network topology
dated on February 2, 2005. This snapshot was obtained
as a result of an ongoing research project at University of
Oregon. The authors of [15] have described the implemen-
tation of their measurement work and the characteristics of



modern Gnutella network topology. More details are pro-
vided in a technical report [14]. This snapshot includes over
160K peers and its average number of neighbors per peer is
close to 24. For completeness, we show its degree distri-
bution in Figure 2. The degree distribution in this snapshot
is close to the observations from [15]. First, many peers
have degree close to 32, indicating that dynamic querying’s
recommended number of neighbors has been well accepted
by the peers. We have also noticed about 15% of the peers
have degree less than 15 (notice the logarithmic scale of the
plot). As recommended in [7], dynamic querying will not
be used by such peers if not specially noted. Second, the
degree distribution does not follow a power law. Only a few
peers have extremely large numbers of peers. In our evalu-
ation, we discard such peers for two reasons: (1) the study
in [15] revealed that these peers might be used for purposes
other than supporting flooding queries, and (2) such peers
may not be able to faithfully propagate the query packets
as they will easily be overloaded. Such peers are only over
0.01% of all peers in the snapshot.
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Figure 2. The degree distribution of a snap-
shot of the Gnutella network used in our eval-
uation.

We have implemented the dynamic querying algorithm
in a simulator. We have followed the protocol specifica-
tions and used the recommended parameter settings in [7].
Unless otherwise noted, a peer with degree at least 15 is
picked to manage a search process. There is no restriction
on the degree of peers who forward queries. They faithfully
propagate the queries when TTL is not equal to zero, just
like in the expanding ring algorithm. In the probe phase,
the query is propagated down three neighbors with TTL=2.
We use the approach described in the same document to es-
timate theoretical horizon and the average popularity of the
searched item. The default maximum TTL value allowed
for each neighbor is 4. The calculated TTL value is rounded
up or down to an integer value. The timeout interval is set
to TTL times 2.4 seconds as recommended.

We set the replication ratio to be 0.01. Since there
are over 160K peers in the topology, we uniformly place
just over 1600 copies of the searched item in the network.

We have considered more skewed replication schemes, and
found the relative performance of different algorithms does
not change much. Each search is for 50 results. This is the
maximum allowed number of results requested by a user.
The probe phase returns about 10 results (with a large vari-
ation). We have considered a range of replication ratio. Al-
though the replication ratio affects the absolute search cost
and the absolute latency, it does not affect the relative per-
formance of the algorithms. Therefore, similar conclusions
have been reached. It is worth noting that when the replica-
tion ratio is p and the copies are uniformly placed, the min-
imum average search cost is 1/p packets per result. That
is, on average at least 1/p peers must be contacted to return
a result. This is a property of Bernoulli trials. We find all
algorithms have the per-result cost slightly higher than this
minimum value. This observation is consistent when the
replication ratio is within a wide range.

4.3. Performance Comparison to Expanding Ring

Figure 3 shows the performance of the expanding ring
algorithm in terms of (a) the number of returned results, (b)
the number of query packets transmitted, and (c) the peer
perceived latency. Figure 4 shows the performance of dy-
namic querying. In each plot, the x-axis is the sequence
number of our simulation runs. Thus each point in the fig-
ures represents the result from one run. Although we have
run the simulator for longer periods of time, for clarity, this
figure shows only the first 100 runs of each flooding algo-
rithm. For the expanding ring algorithm, the TTL value is
incremented by one after each unsuccessful round of flood-
ing. For dynamic querying, we show the results when only
high degree (at least 15) peers are enabled to use dynamic
querying; for comparison (and to better understand dynamic
querying), we also show the results when low degree (be-
tween 7 and 9) peers manage the search process for its
leaves in Figure 5.

4.3.1 The “Good” of Dynamic Querying like Flooding

Let us first look at the number of returned results by the
expanding ring algorithm and dynamic querying, see Fig-
ures 3(a) and 4(a). The expanding ring algorithm often has
big overshooting and return much more results than neces-
sary. This is because, the network topology has high aver-
age degree. The gap between two consecutive TTL values
is so huge that it is almost impossible for the expanding
ring algorithm to find just enough results. That means, the
coarse-grain control does not work well in high degree net-
works. On the contrary, dynamic querying often returns just
more than the desired number of results. The cautious way
of flooding queries pays off.

Consequently, Figure 4(b) shows that dynamic querying
reduces the search cost by several times. We have obtained
more statistics from 1000 simulation runs with different
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Figure 3. The performance of the expanding ring algorithm.
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Figure 4. The performance of the dynamic querying algorithm.
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Figure 5. The performance of dynamic querying with low degree (between 7 and 9) peers.

random seeds. On average, dynamic querying returns close
to 55 results and the number of transmitted packets is close
to 6400. We have also found that the search cost is usually
proportional to the number of returned results. For expand-
ing ring, the number of query packets per result is about
120. For dynamic querying, this quantity is about 117. In
our configuration, we use uniform replication with replica-
tion ratio p=0.01. On average the least possible number of
packets per result is 1/p=100. Therefore, dynamic query-
ing does not incur much unnecessary overhead (17% in our
simulation).

4.3.2 The “Bad” of Dynamic Querying like Flooding

Unfortunately, dynamic querying obtains lower search cost
at the price of a much undesirable property. Figures 3(c)
and 4(c) show the latencies perceived by the users. With

expanding ring, a source peer often floods the query pack-
ets three times (with TTL=1,2,3) and rarely floods the query
packets with TTL=4. Given that the timeout interval is set to
TTL times 2.4 seconds, the average latency is below 20 sec-
onds. With dynamic querying, the average latency is close
to 70 seconds. It is often above 100 seconds, and occasion-
ally it is above 3 minutes. It is also much more variable.

This undesirable behavior is due to the flawed design of
this algorithm. Dynamic querying takes a very conservative
approach to avoid sending query packets to too many peers.
In each iteration, it estimates the number of peers to be con-
tacted in order to find the desired number of results. The
source peer has many, say 30, remaining neighbors. It first
sends a query packet via one of these neighbors. The TTL
is set such that in this iteration the source peer will contact
about 1/30 times the total number of peers to be contacted.
Thus an unlucky source peer may find it must send query



packets via all neighbors, one after one. Therefore, the la-
tency can be extremely high. In other words, more likely the
dynamic querying technique will lead to a search process as
the second one in Figure 1 than the first one.

4.3.3 The “Ugly” of Dynamic Querying like Flooding

We say that this flooding algorithm is ugly because its per-
formance highly depends on the connectivity of the source
peer. The algorithm has a strict constraint on the network
connectivity: it requires that a source peer should maintain
at least 15 neighbors; otherwise it would be inefficient and
the search process would become less stable. To show this
problem and understand why dynamic querying needs such
a strict constraint, we simulate it when the source peers have
lower degrees (their degrees are between 7 and 9). Figure 5
shows the results.

The figure shows that the search cost (as well as the
number of results) becomes higher, more variable and less
predictable than that with high degree peers as the source
peers. Furthermore, when we simulate dynamic querying
from peers with even lower degrees, the cost increases fur-
ther and becomes even more variable. Although the latency
is also reduced, the number of returned results is often much
smaller than the desired number and sometimes is much
larger that the desired number. To interpret these differ-
ences, just notice that now the source peer has fewer neigh-
bors. There are two consequences. First, since there are
not many neighbors after the probe phase, the iterative pro-
cess will often prematurely halt. Second, the source peer
becomes more aggressive in propagating a query packet to-
wards each neighbor. It is more likely to cause big random
overshooting.

For this reason, the existing Gnutella implementation
recommends each peer should have degree up to 32. This
design choice has greatly transformed the underlying net-
work topology. Currently the network has a very fat topol-
ogy (with diameter just over 4 hops). However, there are at
least two reasons against this design choice. First, the tech-
nique has limited its usefulness to the current Gnutella net-
work only, not the general unstructured networks. Second,
this fat topology may affect other than the flooding algo-
rithm. For example, maintaining a larger number of neigh-
bors incurs higher communication overhead, especially if
the peer relationships are more dynamic due to frequent
peer joining/leaving.

5. Exploiting Dynamic Querying like Flooding

The original dynamic querying algorithm is very con-
servative in propagating query packets to the network. It
causes excessive search latency and can be used by high
degree peers only. In this section we modify its iterative
process to improve its performance and to extend its appli-
cation to more general unstructured peer-to-peer networks.

5.1. Algorithm Design

The enhanced algorithm contains all aspects of a sin-
gle dynamic querying, which mainly includes probe queries
and TTL calculation. The source peer begins the search (for
N results) by first sending a query towards a few neighbors
with a fixed TTL, This is just like in the original dynamic
querying. In succession, the network replies n ≥ 0 results
that can be used to deduce the popularity of the item. After
getting an estimate of its popularity, we can subsequently
calculate the TTL for the next neighbor. A query packet
with this TTL value is propagated via this next neighbor.
The new number of results is obtained and iterated to calcu-
late the TTL for another neighbor. This process continues
until the desired number of results are obtained or all neigh-
bors are used.

The main difference is the iterative process of the en-
hanced algorithm. This iterative process is (1) greedy — in
each iteration, the source peer propagates a query packet to
a new neighbor, hoping to find all the required number of
results via this neighbor alone, and (2) conservative — at
the same time, to avoid overshooting, the source peer uses
a confidence interval method to provide a safety margin on
the estimate of the popularity of the searched item.

Recall that in the original dynamic querying, when there
are many remaining neighbors, a query packet is propagated
to just a small fraction of the required number of peers. This
method is doomed to have a high latency. On the other hand,
if in each iteration the TTL is set larger and the query packet
is propagated to the right number of peers, then likely in just
one or few iterations, there will be enough returned results.
This is the intuition behind our greedy approach.

Since we use a greedy iterative process (which is more
aggressive than that in the original dynamic querying), more
likely there will be big random overshooting of the search
space. Therefore, we need a more conservative estimate of
the popularity of the searched item using, for example, a
confidence interval method. This is the intuition behind our
conservative approach.

To complete the description of our proposal, next we
present details on how to estimate the popularity of the
searched item conservatively and how to calculate the TTL
value for a new neighbor.

5.1.1 Estimating Item Popularity

We use the following confidence interval method to esti-
mate the popularity of the item conservatively. First we as-
sume uniform replication of the item. The search process
is considered as a sequence of Bernoulli trials. Let H0 de-
note the current search horizon (i.e. the sample size). The
probability of obtaining i results is given by the binomial
distribution

Probp(i|H0) =
(

i
H0

)
pi(1 − p)H0−i,



where p is the replication ratio or the popularity of the
item. When the sample size H0 is large, this probability
approaches the Poisson distribution

lim
H0→∞

Probp(i|H0) =
mi

i!
e−m,

where m = pH0. This distribution has mean m, variance
m, and standard deviation

√
m. Then we use Pearson’s con-

fidence interval on Poisson distribution as follows. Given
the number of returned results n, we choose a conservative
estimate m′ of the true mean m by solving:

m′ − δ
√

m′ = n,

where the constant δ > 0. We obtain

m′ = n +
δ2

2
+ δ

√
n +

δ2

4
, (1)

which is the upper limit of Pearson’s confidence interval.
This result says, if there are n ≥ 0 returned results, then the
expected number of returned results is less than m ′ with a
probability determined by the parameter δ.

There is a tradeoff between choosing a larger value for
the parameter δ and choosing a smaller value. First choos-
ing a larger value for δ results in more conservative estimate
of the mean m. For example, when δ = 1, the confidence
level is about 68% and the upper limit probability is about
16%, but if δ = 3, the confidence level is about 99.7%.
Therefore, choosing a larger value for δ will less likely
cause overshooting. On the other hand, being more conser-
vative means that it often takes longer time for the source
peer to discover the required number of results. In the en-
hanced algorithm (and in our evaluation later), we choose
δ = 3. The value provides a high confidence level. We do
not think an even larger value is necessary. Our main rea-
son is, since the average search cost is representative of the
query load in the network, an occasional (very rare indeed)
overshooting is not overwhelmingly concerned.

Notably, this above approach handles well the special
case of no returned result (n = 0). Our enhanced algorithm
has a conservative estimate of m′ = δ > 0 returned results.
It implies that even if the searched item has a much variable
replication ratio, our enhanced algorithm still works. On the
contrary, the original dynamic querying algorithm needs to
handle this special case separately (the source peer usually
increases the TTL value for the next neighbor).

5.1.2 Calculating TTL value

Since we have an estimate of the popularity m ′/H0, we can
compute the search horizon H for the next neighbor, which
should be equal to H0(N −n)/m′. Assume the next neigh-
bor has degree d which can be known, and the average de-
gree of the network is D which can be estimated. We should

pick the TTL value such that H equals the horizon within
TTL hops from this neighbor:

H = (d − 1)
TTL−1∑

i=0

(D − 1)i

≈ (d − 1)(D − 1)TTL

D − 2
.

This is equivalently to

TTL ≈ log(D−1)

H(D − 2)
d − 1

. (2)

One problem is, the obtained TTL value is often a float-
ing number. There are two approaches to handling it. The
first and the simpler one is, we can round this floating num-
ber into an integer (We will evaluate this approach later). To
achieve fine-grain control, we can take the second approach
and modify peers’ forwarding algorithm slightly. When a
peer receives a query packet with TTL ≥ 1, it forwards it
(with TTL decreased by 1) to all neighbors as usual. If the
TTL value is a fraction, the peer forwards the packet (with
TTL set to 0) to a subset of its neighbors. The size of this
subset should be equal to dTTL − 1, where d is this peer’s
degree. To understand this, just notice that when TTL = 0,
the packet should not be forwarded to any neighbors; when
TTL = 1, the packet is forwarded to all neighbors. There-
fore, the peer needs to forward the packet to each of its d−1
neighbor with a probability equal to (dTTL − 1)/(d − 1).

5.2. Performance Evaluation

We have implemented the enhanced algorithm in our
simulator. It uses the same parameter settings of dynamic
querying. In addition, we set δ = 3 in estimating item pop-
ularity and set the TTL value to be the calculated floating
number. The average degree D ≈ 24 is calculated from the
topology. We have also found the algorithm is not sensi-
tive to this value. Hence, in real implementation the algo-
rithm can use an approximate value of D. Figure 6 shows
the performance of the enhanced algorithm when the source
peers have degree no less than 15, and Figure 7 shows its
performance when the source peers have degree between 7
and 9. Thus, we should compare these two figures to Fig-
ures 4 and 5, respectively. In both figures we show the re-
sults from the first 100 simulation runs. In addition, we
have obtained statistics from more simulation runs of vari-
ous algorithms, and plotted the results in Figure 8. In this
last figure, we show both the average quantities (of result
count, packet count, and latency) and the 90-percentiles
from 1000 simulation runs of each algorithm. In the figure,
“TTL” represents the expanding ring algorithm; “DQ” and
“DQ/low degree” represent dynamic querying with high de-
gree (at least 15) peers and with low degree (between 7 and
9) peers, respectively; “DQ+” and “DQ+/low degree” rep-
resent our enhanced algorithm with high degree (at least 15)
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Figure 6. The performance of our enhanced algorithm.
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Figure 7. The performance of our enhanced algorithm with low degree (between 7 and 9) peers.
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Figure 8. A performance comparison of expanding ring (TTL), dynamic querying (DQ), and our en-
hanced algorithm (DQ+).

peers and with low degree (between 7 and 9) peers, respec-
tively. Thus, the five mean values (and confidence intervals)
correspond to the results in Figures 3-7.

The figures show that the enhanced algorithm obtains al-
most exactly the desired number of results, see Figures 6(a)
and 8(a). We also observe that it has slightly lower search
cost than the original dynamic querying. The total number
of packets transmitted per run is only 5900, compared to
approximately 6400 packets for the original dynamic query-
ing. The number of transmitted packets per results is about
109. This is very close to the least possible number of 100
with our configuration.

Figure 7 shows the results from the simulations of the
enhanced algorithm when the source peer has a lower de-
gree (between 7 and 9). Recall that the original algorithm

cannot be used by these low degree peers to perform flood-
ing efficiently (see the results in Figure 5 and the discus-
sions in Section 4). However, with our enhanced algorithm
these low degree peers often find the right number of results
at low search cost. The performance (number of returned
results and number of transmitted packets) is much more
stable and predictable. Therefore, our enhanced algorithm
loosens the strict constraints on the network connectivity.
Note, given that the probe phase uses three neighbors, the
iterative process has the other 4 to 6 neighbors available.
Our enhanced algorithm often does not need that many it-
erations to reach the target number of results. We have also
simulated the enhanced algorithm when the source peer has
an even lower degree (between 4 and 6). Two of these 4-6
neighbors are used in the probe phase. With this config-



uration, the enhanced algorithm does reasonably well (the
average number of results is about 55 and the average num-
ber of packets per result is about 106).

Finally Figures 6(c), 7(c), and 8(c) show that the en-
hanced algorithm effectively bounds the search latency. Its
average latency of about 16 seconds is very close to that of
the expanding ring algorithm, and is much smaller than that
of the original dynamic querying. Moreover, the latency is
less variable.
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Figure 9. Traces from six typical simulation
runs of the original dynamic querying algo-
rithm and the enhanced algorithm.

To further understand the differences between the two
algorithms, Figure 9 plots six typical traces of simulation
runs, three of them using the original dynamic querying
and the other three using the enhanced algorithm. Each
curve shows the number of returned results when time has
elapsed since the start of the query process. The first point
of each curve represents the end of the probe phase and each
subsequent point represents the end of each iteration. The
purpose of this figure is just to contrast the two algorithms.
With the original dynamic querying, the number of returned
results increases slowly, reflecting the very conservative na-
ture of the iterative process. On the contrary, the enhanced
algorithm is initially more aggressive, then levels off when
the number of returned results approaches the target. As a
result, the enhanced algorithm needs fewer iterations and
lower search latency.

6. Implementation and Deployment Issues

In this section we discuss issues related to the implemen-
tation and deployment of dynamic querying like flooding
techniques. We use the Gnutella network as an example,
but the conclusions also apply to the general unstructured
peer-to-peer networks which implement flooding search.

In dynamic querying like flooding techniques (includ-
ing the original algorithm in Gnutella and our enhanced
algorithm), the source peers manage the search process
and other peers in the network faithfully forward the query

packets. In the original algorithm, there is no need to up-
grade the software in the other peers. As we discussed in
Section 5.1, there is one exception in our enhanced algo-
rithm: the obtained TTL value is often a floating number
and currently this may not recognized by the peers in the
network. We proposed two approaches to handling this.

The first approach is, we round the floating TTL value
into an integer. Thus, the algorithm does not require any up-
grade in the other peers and it can be readily deployed too.
One issue is how to round this number. We should weigh
it towards the floor of the floating number since picking the
ceiling would more likely cause overshooting. To evaluate
this approach, Figure 10 shows the results of 100 simulation
runs when the TTL value is rounded into an integer such
that the ratio between picking the ceiling and picking the
floor is 0.3:0.7. Compared to the original dynamic querying
(Figure 4), this figure shows that this simplified version of
our enhanced algorithm has approximately the same perfor-
mance in the number of returned results and the number of
transmitted packets, but has much lower latency (which av-
erages just over 28 seconds). Therefore, even though using
a coarse-grain TTL setting, the enhanced algorithm is much
better than the original dynamic querying.

Our second approach is to modify peers’ forwarding al-
gorithm to support floating TTL values, as described in Sec-
tion 5.1. For example, in the Gnutella network, we can
slightly modify the query message header. The message
header includes a message identifier (16 bytes), payload
type (1 byte), TTL (1 byte), hops (1 byte), and payload
length (4 bytes). The existing peers interpret the TTL value
as an integer, so we use this field to represent the integral
part of the floating TTL value. To represent the remaining
fraction, we have two choices. The first choice is, we use
one of those reserved bytes in in the header. For example,
the last byte of the message identifier is currently set to all
0’s; the last two bytes of the payload length are always 0’s
as the length is limited (less than 4KB). The second choice
is, we append one byte to the entire query message, and
accordingly increases the payload length by one. This just
works well since the payload length field is only for peers to
find the beginning of the next message in the input stream.

Finally, an important issue related to deployment is the
incentives for users to adopt our enhanced protocol. We
argue that the original dynamic querying algorithm is de-
signed to be altruistic. That is, the peers using the proto-
col restrain themselves and avoid flooding query packets to
a large population in the network. However, an individual
user behind such peers does not benefit from the adoption of
this algorithm (indeed, they may suffer from the high search
latency). Therefore, selfish users in the current network may
still choose peer software that implements more aggressive
flooding search. On the contrary, although our enhanced al-
gorithm is designed to have altruism too, the users do not
suffer from a high latency. Therefore, we expect the users
will be more willing to adopt our proposal.
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Figure 10. The performance of the enhanced algorithm when the TTL value is rounded into an integer.

7. Conclusion

This paper exploits new flooding techniques other than
the expanding ring algorithm in unstructured peer-to-peer
networks. Dynamic querying like techniques are different
in that they adjust the scope of search based on the estimated
popularity of the searched item. We first use Gnutella’s
dynamic querying algorithm as an example and present an
evaluation. We find it causes excessive search latency and
adds strict constraints on the network connectivity. We then
propose an enhanced algorithm—a greedy and conservative
flooding algorithm which requires search cost close to the
minimum, reduces the latency by more than four times, and
loosens the constraints on the network connectivity. Our
proposed algorithm requires only minor or no modifications
to the existing peer software. To summarize, our work re-
veals that there are potentials to make dynamic querying
like flooding technique useful for the general unstructured
peer-to-peer networks.

We are currently working in two directions. First we will
analyze various search algorithms for unstructured peer-to-
peer networks to gain deeper understanding of them. We
need consider both flooding based and random walk based
algorithms. Second we will explore flooding based algo-
rithms for a wider range of applications, in particular other
unstructured networks such as wireless ad hoc and mesh
network, and sensor networks.
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