
Robust Multiclass Signaling Overload Control

Sneha Kasera
University of Utah

kasera@cs.utah.edu

José Pinheiro
Novartis Pharmaceuticals

jose.pinheiro@pharma.novartis.com

Catherine Loader
Case Western Reserve University

catherine.loader@cwru.edu

Tom LaPorta
Pennsylvania State University

tlp@cse.psu.edu

Mehmet Karaul
Self-Employed

karaul@earthlink.net

Adiseshu Hari
Lucent Bell Laboratories
haria@dnrc.bell-labs.com

Abstract

We propose multi-class signaling overload control al-
gorithms, for telecommunication switches, that are robust
against different input traffic patterns and system upgrades.
In order to appropriately measure the system load when sev-
eral classes of signaling traffic are present, we first intro-
duce the concept of equivalent system load measure, that
converts the multiple system measures associated with dif-
ferent classes of traffic into a single measure with respect
to a pre-defined base class. We use this measure to develop
three multi-class overload detection and measurement algo-
rithms. Next, we develop a new algorithm for partitioning
the allowable equivalent system load across multiple traffic
classes, using a strict priority scheme. Using simulations
of call flows from mobile telecommunications standards, we
compare different multi-class overload algorithms under a
variety of overload conditions. Our simulation results indi-
cate that our algorithm that measures system load using a
combination of request acceptance rate and processor oc-
cupancy, provides highly reactive and robust overload con-
trol. Last, for the purpose of making the overload con-
trol algorithms more robust, we propose a measurement-
based simple regression technique to dynamically estimate
key system parameters. We find that estimates derived in
this manner converge rapidly to their true values.

1 Introduction

Telecommunication switches are engineered to support
a certain number of active calls and to process requests for
calls and services at a certain rate. Occasionally, service re-
quests may arrive at a switch at higher rate than the switch
can process, even if a switch has available bearer resources.
This is possible under many conditions in a multi-service
wireless network, for example a UMTS network, in which

many requests to the network are for services other than
connections, such as location updates. In this paper, we
address processor overload controls due to signaling traf-
fic. These controls execute inside switch controllers to re-
act to conditions of high signaling requests that overwhelm
internal switch processing resources. They are required to
maintain system integrity and maximize performance dur-
ing overload. The lifetime of switches is many years, and
processor upgrades can only be made within tight power
budgets and floor-space constraints which are major cost
factors in running a telecommunication network. Therefore,
properly engineering a switch for expected traffic, and re-
lying on overload control algorithms to manage unexpected
bursts of requests is critical to providing a cost effective ser-
vice. These controls may also be used for load balancing
and traffic differentiation.

Due to the ever growing demand for faster, ubiquitous,
and newer services, mobile telephony poses new challenges
in the design of signaling overload control algorithms for a
switch. First, user mobility causes fast changing hot spots
resulting in bursty signaling traffic. Second, user mobility
management and newer services result in a large number
of signaling messages that require processing in an access
switch. Third, some service requests might be more im-
portant than others, thereby requiring differential treatment
under overload. Multi-class overload controls, as opposed
to single class overload controls, are critical to multi-service
wireless networks. The importance of service requests for
basic users may vary from requests to establish calls, which
generate immediate revenue, to registrations which may
generate revenue in the future. Furthermore, these networks
will provide multiple services, including voice, data, and
messaging, each of which may generate different revenues
for operators. By instituting multi-class overload controls,
operators may maximize their revenue during overload pe-
riods.

Under overload, a switch may invoke remote overload

control by signaling its neighbors of its state. In practice,
although recommended procedures exist to deal with inter-
switch congestion control, many deployed switches do not
implement these algorithms. Therefore, it is critical that a
switch makes no assumptions about any remote overload
control and locally protect its own processing resources by
implementing appropriate local overload controls. This is
usually done by throttling a fraction of the new service re-
quests. In the multi-class case when certain service re-
quests are more important than the others, the throttling
must honor the class priority.

In this paper, we propose multi-class local overload con-
trol algorithms that are designed to be robust against dif-
ferent input traffic patterns (gradual, bursty) and system
upgrades. Generally, overload control algorithms involve
measurement of the system load and its comparison with a
specified or measured system load threshold. When the sys-
tem load threshold is reached or exceeded, overload control
actions are triggered. In order to appropriately measure the
system load when several classes of traffic are present, we
first introduce the concept of equivalent system load mea-
sure, that converts the multiple system measures associated
with different classes of traffic into a single measure with
respect to a pre-defined base class. For example, arrival
rates corresponding to calls, location updates, registrations,
and short messages may be converted into a single, equiv-
alent arrival rate. We use the concept of equivalent system
load measure to develop three multi-class overload detec-
tion and measurement algorithms. These algorithms extend
the single-class algorithms presented in [8].

The first algorithm (denoted “Occupancy”) uses proces-
sor occupancy to measure system load. The second algo-
rithm (denoted “ARO”) uses acceptance rate in conjunction
with processor occupancy to measure the system load. Ac-
ceptance rate is defined to be the number of service requests
accepted into the system in a given time interval. The third
algorithm (denoted “SiRED”) measures the system load us-
ing queue lengths. Each of the three algorithms determine
how much equivalent load should be allowed into the sys-
tem at any given time. We develop a new procedure for par-
titioning the allowable equivalent load across traffic classes,
using a strict priority scheme that assigns preferential treat-
ment to higher priority classes. Our partitioning procedure
is common to all the three algorithms.

Although our algorithms can be used in a variety of net-
work elements, in this paper, we develop and evaluate them
for a Mobile Switching Center (MSC). MSCs are the heart
of the mobile telecommunication networks. They perform
both control and transport functions. Control functions in-
clude routing calls to and from mobile users through the
access radios, processing authentication of location update
requests from mobile users, accessing user profiles so that
advanced services may be invoked, and providing access

to data services such as short messaging services. These
control services are requested and invoked through the ex-
change of application level signaling protocols. We use
simulations of call flows from mobile telecommunication
standards to investigate the performance of the three algo-
rithms. We find that all three algorithms are capable of sus-
taining good throughput and delay performances under a
wide range of steady overload conditions. Interestingly, un-
der sudden load ramp up, ARO and SiRED dramatically
reduce the reaction time and the maximum average delay in
comparison to the Occupancy algorithm. In comparison to
SiRED, ARO has a slightly higher reaction time and max-
imum average delay under sudden load ramp up, but pro-
vides more stable feedback under heavy overload, leading
to a throttling pattern that is more consistent with the de-
sired priority scheme.

Our algorithms require the relative processing cost of
each class of traffic. Knowledge of switch behavior may
allow values to be specified, but it is important to know
how robust the algorithms are when the relative processing
costs are mis-specified. We find that mis-specification can
cause some instability in the algorithms, particularly if the
cost of a high priority event is under-specified. For the pur-
pose of making the algorithms more robust, we propose a
scheme that does not require prior specification, but instead
uses simple regression techniques to obtain estimates of rel-
ative processing costs using measured data. We find that
estimates of relative costs derived in this manner converge
rapidly to their true values as additional data accumulates.

The rest of the paper is structured as follows. Section 2
describes related work in multi-class overload control algo-
rithms. A high level description of a wireless access switch
and the system model used is presented in Section 3. The
multi-class overload algorithms considered in the paper are
described in Section 4 and compared via simulations in Sec-
tion 5. We conclude in Section 7 and also provide several
directions for future extensions to our work.

2 Related Work

Overload and congestion control has been actively stud-
ied in both telecommunication networks and the Internet. In
telecommunication networks, single class overload controls
have been proposed and evaluated in [4], [5], [8], [11], [13],
[14]. In [1] the authors examined a multi-class token-based
scheme where a newly arrived call of a given class is ac-
cepted when there is free token of that class or when there
is free token in a common pool of unused tokens. One con-
cern with this scheme is that there is no priority mechanism
in using the tokens of the common pool and under overload,
calls belonging to lower priority classes might exhaust these
tokens. In [12] Rumsewicz used different queue size thresh-
olds, one for each class, for discarding call messages when

the thresholds are exceeded in a tail drop manner. He also
observed that call completion throughput rather than mes-
sage throughput is a better measure of performance. We
also use call completion throughput as one of our perfor-
mance measures.

In the Internet, overload control has manifested itself in
active queue management of router queues. Most of the
proposed multi-class active queue management approaches
including RIO [3], WRED [15] and [2] are multi-class ex-
tensions of the Random Early Discard (RED) algorithm [6].
In these approaches, different average queue size thresh-
olds are set for different classes and packet drop probabil-
ities are computed based on how the actual average queue
length(s) compare with the thresholds. It is assumed that
the link, rather than the processor, is the bottleneck. In or-
der to study the applicability of RED-like approaches in the
context of controlling processor overload due to multi-class
signaling traffic, we studied a modified version of WRED,
called signaling RED, or SiRED. The performance of RED,
RIO, WRED has been mainly evaluated in the presence of
TCP traffic with TCP’s remote overload control (end-to-end
congestion control). In evaluating our algorithms, we do not
assume any remote overload controls.

Our algorithms and their evaluation extend and build
upon the earlier work on single class signaling overload
control [8]. The main enhancements and differences
from [8] are as follows. First, we consider multiple classes
of traffic and introduce the concept of equivalent system
load measures to design multi-class overload control algo-
rithms. We introduce a new algorithm for partitioning load
across multiple classes of traffic. Second, we evaluate our
algorithms for a wireless scenario. Last, we propose a sim-
ple scheme that uses regression techniques to estimate rela-
tive processing cost of calls belonging to each traffic class.

We end this section by noting that several papers on han-
dling multi-class traffic have been written in the context
of admission control where new calls or requests are ad-
mitted or dropped depending upon their requirements and
the available bearer resources. This differs from our work
which focuses on controlling processor overload due to the
signaling messages themselves.

3 System Description and Model

The functional components of an MSC [10] are shown
in Figure 1. Typically, the processing in a switch is dis-
tributed between line cards and processing cards [14]. The
signaling component, which terminates the protocol inter-
faces with the network, is implemented on line cards. These
line cards exchange internal control messages with the pro-
cessing cards which perform the call processing and Visi-
tor Location Register (VLR) functions. The call processing
functions include call routing, invoking services, and main-

taining call state.

Cards

VLR

Bearer ResourcesBearer Traffic

Signaling Traffic

Administrative,
Other

Functions

Line Cards

Call Processing

Figure 1. A Typical Mobile Switching Center

We are concerned with signaling overload control at the
line and the call processing cards. Signaling traffic arrives
in the form of new requests, messages associated with es-
tablished requests, or those associated with requests that are
in the process of getting established. It is a standard practice
to throttle new requests under overload rather than throttling
a message associated with an established request or that as-
sociated with a request in the process of getting established.
This allows elimination of future signaling messages associ-
ated with the throttled requests. When a signaling message
arrives at a line card, the line card must first perform lower
layer protocol processing and any other processing to deter-
mine if the signaling message is a new call request. Hence
even if a new call is throttled due to overload in the line card,
it imposes some processing cost on the line card. This pro-
cessing cost is called the throttling cost. A call processing
card may avoid this cost by communicating its load (or the
rate at which it would accept calls) to the line card(s) which
identifies and throttles new calls appropriately. The divi-
sion of functionality across cards varies in different switch
implementations.

We model a card, also referred to as system, by a sin-
gle processor queue as shown in Figure 2. In this model,
new requests belonging to different priority classes are as-
sumed to arrive at the queue. For example, in the case of
the MSC we could potentially have five different priority
classes of requests - mobile calls, power-up registrations,
location updates, paging requests, and SMS (short messag-
ing service) requests. Depending on the current measure
of load of the system, the class priority, and the overload
control algorithm, a new request could be accepted or throt-
tled. If the new request is accepted, it is processed by the
CPU and, depending on the nature of the request, an ad-
ditional task is generated and fed back into the system af-
ter a variable delay. This additional task, when processed,
may generate more tasks which are fed back into the sys-
tem. The processor schedules tasks using a first-in-first-
out policy. Eventually, when all the tasks associated with

 Delay
Variable

CPU

Create new tasks
for accepted calls

Throttled Requests

Variable
 Delay

New Requests

 Retrial

 No Retrial

Completed Requests

Scenario1: Cost of throttling incurred
 by neighboring card.

 Delay
Variable

CPU

Create new tasks
for accepted calls

Throttled Requests

Variable
 Delay

New Requests

 Retrial

 No Retrial

Scenario2: Cost of throttling incurred
 by signaling card.

Completed Requests

Figure 2. Single processor queue model for a
card.

an accepted request are executed, the request is considered
completed and removed from the system. The generation
of new tasks models the multiple tasks and messages asso-
ciated with a request. The variable delay applied to a task,
before it is fed back into the system, models the delay be-
tween arrival of different tasks associated with a request.
Two throttling scenarios are shown in Figure 2. In the first
scenario, a new call is throttled in a neighboring card and
hence is shown to be throttled even before it is queued. In
the second scenario a new call is throttled after incurring
some processing cost. Due to user retrials a throttled request
could arrive again at the system after a variable amount of
delay. In this paper, we will only examine the first throttling
scenario and assume that the call retrials are part of the new
calls. The correlation between throttled calls and the retri-
als is not considered. Retrials cause overload to persist for
a longer period of time. We do consider persistent overload
in our evaluation in Section 5.

4 Multi-class Overload Algorithms

In this section we develop overload control algorithms
for multiple classes of signaling traffic representing tasks
of multiple types of service requests. Under normal condi-
tions, when the processor is not in overload, all the requests
are allowed into the system. When the processor is in over-
load, some requests are throttled. In this paper we consider
the scenario where service requests are arranged in strict
priority order and under overload lower priority service re-
quests are throttled first. An alternate approach would be to

allow some kind of fair access to different service requests
but we do not consider that approach in this paper.

As mentioned earlier, the process of throttling tasks
could be done intelligently by throttling only those tasks
that initiate service requests. It is assumed that ongoing
events cannot be terminated to reduce overload.

All multi-class overload control algorithms considered
in this paper are comprised of three steps.

1. A Time-driven measurement and detection mechanism
in which system load is measured at fixed probe times,
with overload being assessed at every kth probe inter-
val, denoted the assessment time. The detection mech-
anism produces a total fraction of the incoming service
requests that must be allowed into the system.

2. An allocation mechanism, in which the total fraction
to be allowed is converted into fractions for individual
classes, in a manner that respects class priority.

3. A throttling scheme, which converts the fractions al-
lowed into accept/reject decisions for individual events
in each class.

The algorithms presented below differ only with respect to
the first step where different measures are used for detect-
ing overload; the allocation and throttling mechanisms are
common to all algorithms.

In the rest of this section we introduce the concept of
equivalent measures used in three multi-class overload de-
tection and measurement algorithms (Step 1) described be-
low. This is followed by a description of the allocation pro-
cedure (Step 2) and the throttling scheme (Step 3).

4.1 Equivalent System Load Measure

Equivalent system load measure allows us to convert
the multiple system load measures associated with differ-
ent classes of traffic into a single load measure with respect
to a pre-defined base class as described below.

It is assumed that there are M types of origination events
that start a new thread of tasks (e.g., new calls, location
updates, registrations), which are assumed to be the only
events that can be throttled. These origination events arrive
at rates λi, i = 1, . . . , M events/sec and are processed by
a single card at rates µi, i = 1, . . . , M . The corresponding
average processing times µ−1

i comprise the complete pro-
cessing of the events, including all subtasks they generate,
up to their termination.

It is also assumed that a strict throttling priority pi, i =
1, . . . , M has been established for each event class, such
that, if pi < pj , then events of class i should be throttled
before events of class j. A processing priority may also
be established for the event classes, but, for simplicity of
implementation, we consider that all events have the same

processing priority and are processed according to a FIFO
scheme.

Let ci represent a generic system measure for class i
based on counts. Examples of such count measures are ar-
rival rates, acceptance rates (i.e., the number of events ac-
cepted into the system per unit time), and queue lengths
(i.e., the number of events waiting for processing).

One possible way of combining the different class count
measures would be to simply add the ci, but this is clearly
not reasonable for certain load measures, as events in differ-
ent classes generally have very different processing times.
For example, if a location update takes, on average, 10%
of the average processing time of a call, then accepting ten
new location updates into the system is equivalent, in terms
of processing effort, to accepting one new call. Therefore,
a weighted average of the ci, with the weights proportional
to the processing times of each class, is used to combine
the different class count measures into a single, equivalent
count measure. For that, we choose a class, say the M th, to
serve as a base class and define the relative cost of process-
ing an event of class i with respect to an event in the base
class as πi = µ−1

i /µ−1
M . The equivalent count measure is

then defined as

ceq =

M∑

i=1

πici. (1)

This measure can be interpreted as the equivalent number of
counts (in terms of processing cost) if the system were re-
ceiving only base class events. In order to determine πi’s we
require the relative processing cost of each class of traffic.
A measurement-based scheme for estimating these costs is
derived in [9].

4.2 Overload Measurement and Detection

In this section, we describe three algorithms that use
equivalent measures of system load and compare it with
a corresponding equivalent system load threshold to detect
and measure overload. The goal is to produce an equiva-
lent fraction of the input load that can be allowed into the
system. The three algorithms we describe are multi-class
extensions of the single class algorithms described in [8].
The first algorithm is based on measurement of processor
occupancy, the second is based on a combination of proces-
sor occupancy and acceptance rate measurements, and the
third is based on measurement of queue lengths.

4.2.1 Occupancy Algorithm

Processor occupancy, ρ, is defined as the percentage of time,
within a given probe interval, that the processor is busy
processing tasks. Processor occupancy is a dimensionless
quantity, which makes it relatively system independent. The
measurement of processor occupancy is clearly independent

of the number of event classes present in the system. This
is because the total processor occupancy is the sum of indi-
vidual processor occupancies. Therefore, the measurement
and detection part of the Occupancy algorithm are same in
the single-class and multi-class cases.

In the Occupancy algorithm, the estimated processor oc-
cupancy at assessment interval n, denoted by ρ̂n and given
by the average of the previous k probed processor occupan-
cies, is compared to an occupancy threshold ρthresh. When
the measured ρ̂n is greater than ρthresh, the system is con-
sidered to be in overload, and throttling is forced. When ρ̂n

is less than ρthresh, no throttling is required. The specific
feedback function for the equivalent fraction allowed (simi-
lar to the single class feedback function proposed in [4] and
later examined in [8]), is

f eq
n+1 = restrict

(
fmin,

ρthresh

ρ̂n

f eq
n , 1

)
(2)

where restrict(a, x, b) = max(a, min(x, b)) bounds x to
the interval [a, b]. A minimum fraction allowed fmin is used
to prevent the system from throttling all incoming events.
In the single-class case the fraction allowed is applied di-
rectly to the individual events; in the multi-class case, it
must be split into separate fractions allowed for the individ-
ual classes depending on their priorities. The mechanism
for achieving this is described in Section 4.3.

4.2.2 ARO Algorithm

One of the problems with using an occupancy-based algo-
rithm is that processor occupancy provides only a measure
of the processed load. The offered load in a given time in-
terval might be much higher than the processed load espe-
cially when there is a sudden burst of service requests. The
acceptance rate, defined to be the number of new service
requests accepted into the system in a given time interval,
is a better measure of offered load. An algorithm based
on the acceptance rate (AR) uses a feedback function simi-
lar to (2), but here the average number of accepted service
requests over the past k probe intervals replaces the pro-
cessor occupancy. In our multi-class scenario, the equiva-
lent acceptance rate is obtained using (1). That is, letting
α̂n,i represent the estimated acceptance rate for events in
class i at assessment time n, the equivalent acceptance rate
is α̂eq

n =
∑M

i=1 πiα̂n,i. It estimates the equivalent num-
ber of class M events being accepted into the system. Let-
ting αeq

thresh denote the equivalent acceptance rate threshold
(whose determination is discussed later in this section), the
multi-class AR feedback function is

f eq
n+1 = restrict(fmin,

αeq

thresh

α̂eq
n

f eq
n , 1). (3)

The equivalent acceptance rate threshold αeq

thresh is the
most crucial parameter in the multi-class AR feedback func-

tion (3). It may either be determined based on the engi-
neered capacity of the system, or it may be estimated dy-
namically, by determining the equivalent maximum system
throughput µeq

max = α̂eq/ρ̂, where α̂eq is the current es-
timate of the equivalent acceptance rate and ρ̂ is the cur-
rent estimate of the processor occupancy. We then set
αeq

thresh = ρthreshµeq
max. For robustness against sudden

traffic bursts, αeq

thresh is updated at every K � k probe
intervals, according to an exponentially weighted moving
average (EWMA) scheme with small updating weight w.

The problem with using a detection mechanism based
only on acceptance rate is that this measure does not indi-
cate overload induced by internal changes in the system.
For example, an increase in the service rate for certain
classes of events or consumption of processing resources
by background tasks can not be captured by acceptance rate.
Therefore, it is necessary to combine acceptance rate with
another system measure that represents the system’s pro-
cessed load and not just offered load. This leads us to con-
sider the combined acceptance rate and occupancy (ARO)
algorithm,

f eq
n+1 = restrict

[
fmin, min

(
αeq

thresh

α̂eq
n

,
ρthresh

ρ̂n

)
f eq

n , 1

]
.

4.2.3 SiRED Algorithm

The SiRED algorithm is based on the average queue length
of new events. We use (1) to obtain the equivalent queue
length qeq =

∑M

i=1 πiqi, where qi represents the length of
the queue of originating events of class i1.

The average equivalent queue length at time n + 1 is
estimated according to an EWMA based on the measured
equivalent queue length at time n, qeq

n , Qeq
n+1 = (1 −

w)Qeq
n + wqeq

n , where the updating weight w needs to be
specified. The equivalent fraction allowed for the multi-
class SiRED algorithm is then defined as

f eq
n+1 =





f eq

min, Qeq
n ≥ Qeq

max

1, Qeq
n ≤ Qeq

min

max
[
f eq

min,
Qeq

max−Qeq
n

Q
eq
max−Q

eq

min

]
, otherwise

,

1We consider the equivalent queue of origination events instead of
equivalent queue of all events for the following reasons.

1. There is no simple definition of an equivalent non-originating event
as the relative costs used refer to the complete processing of the event
and the events that are processed by it.

2. In our scheme, only new service requests (originating events) can be
throttled, so there is a direct relationship between the queue length
and the amount of throttling, which would be indirect if all events
were considered.

3. The SiRED algorithm is more reactive when only originating events
are used in the queue because lower threshold can be used, and more
immediate changes in the queue length are produced.

where Qeq

min and Qeq
max are lower and upper thresholds on

the equivalent queue length, which need to be specified
or could also be obtained from specifications of minimum
and maximum queue length thresholds of each class us-
ing (1). Note that unlike the Occupancy and ARO algo-
rithms, SiRED does not use an explicit closed feedback loop
for updating f eq

n .

4.3 Allocation

The detection step of the overload algorithms, discussed
in Section 4.2, determines the equivalent fraction of class
M events that should be allowed into the system. Let
τ eq = 1 − f eq be the the equivalent fraction of class M
events that should be throttled. In the multi-class case, this
throttling fraction needs to be split among the various event
classes, respecting the throttling priority specified for them.
We now describe a simple algorithm for calculating throt-
tling fractions τ1, . . . , τN for each priority, so that the equiv-
alent throttling fraction is τ eq.

Recall the arrival rate for class i events is λi, and the
relative processing cost with respect to the base class M is
πi. The total requested load, per unit time, for class i events
is therefore λiπi, and the total requested load for the entire
system is ΛM =

∑M

i=1 λiπi.
Since the required equivalent throttling fraction is τ eq,

the load that must be throttled is τ eqΛM . The throttling
scheme then assigns individual throttling fractions to each
class, so that the low priority classes are throttled first, and
to maintain the desired overall throttling fraction. Formally,
define Λ0 = 0 and Λk =

∑k

j=1 λiπi; note that Λk is the
cumulative requested load for classes 1 to k. The throttling
fraction τj for class j is

τj =





1, Λj ≤ τ eqΛM

(τ eqΛM − Λj−1) /λjπj , Λj−1 ≤ τ eqΛM < Λj

0, Λj−1 ≥ τ eqΛM

(4)
The allocation algorithm described in (4) requires that

some estimates of the class arrival rates, λi, be available.
We use separate EWMAs in each measured class arrival
rate, which, for robustness, are updated at each Ka � k
probe intervals, using a small updating weight wa.

4.4 Throttling

Given the throttling fraction τn,i to be used for class i
during the nth interval, the throttling scheme determines
which new events to drop. We adopt a deterministic throt-
tling scheme first proposed by [7]. In this algorithm, a vari-
able r is first initialized to 0, then the accept/reject decision
procedure described below is used

r := r + (1 − τn,i).
If r ≥ 1

r := r − 1
accept request

else reject request,

[8] compares this deterministic throttling algorithm to
alternative schemes based on pseudo-random numbers and
concludes that the deterministic algorithm has the best over-
all performance in terms of reducing the variability in the
fraction allowed. The randomness in arrivals from different
sources ensures that no particular source is able to misuse
the deterministic throttling to its advantage.

5 Performance of Algorithms

We now evaluate the performance of the multi-class
overload control algorithms described in Section 4 by sim-
ulating the system model described in Section 3. We make
the simplifying assumption that the process of detecting
overload is free. The simulator used to obtain the results
presented in this section is custom written.

For simplicity, only two classes of events are considered
in the simulation: mobile originated calls and location up-
dates. As described in Section 4, strict priority is used in
throttling events from the two classes. The task and event
structures for calls and location updates, derived from call
flows from mobile telecommunication standards, are pre-
sented in Figure 3. The call model treats each request as
consisting of four task segments: initial request, call setup,
handover, and call termination. The model used for loca-
tion updates consists of a single task segment: the initial
request. The initial request, call setup and call termination
tasks comprise several subtasks which are generated after a
random delay. For the purpose of the simulation, subtasks
occurring with negligible delay of each other are combined
into one subtask. This results in the initial request being
subdivided into one or three subtasks, the call setup being
subdivided into four subtasks and the call termination being
composed of three subtasks. Only 10% of the initial request
events require three subtasks; the other 90% require a single
subtask2. In our simulations, 70% of the calls experience
handover and the ratio of number of calls to the number of
location updates has been assumed to be 1:10.

The system represented in the simulation is designed to
operate under approximately 95% processor occupancy un-
der a load of 592,000 busy hour calls attempts (BHCA),
corresponding to an average of about 164 call attempts per
second, together with ten times more location updates. The

2The choice of one or three subtasks depends upon whether the record
of the user is available on the local VLR or if it must be obtained from a
remote VLR or even the user’s Home Location Register (HLR). Here, we
assume that 90% of the time the user’s record is found in the local VLR.

Location update
arrives

Location update
arrivesarrivesarrives completed

Location update

Initial Request

Initial Request
Call arrives

Call Set-Up

further tasks

further tasks

0.1

0.1

further tasks

Hand-over

0.3

Call Termination

0.7

further tasks

Call completed

Figure 3. Task and event structures for calls
and location updates. Numbers represent
branching probabilities.

probability distributions used for the delays until the next
subtask and the subtask processing times are listed in Ta-
ble 1, with exp(λ) denoting the exponential distribution
with parameter λ and Γ(α, β) denoting the Gamma distri-
bution with parameters α and β. The choice of distribu-

Table 1. Probability distributions for delay un-
til the next subtask and subtask processing
time.

Subtasks
Subt. Delay Process. Mean

Task No. Dist. Dist. (ms)
Init. Req. 1 exp(250) Γ(2.5, 10) .25

2 exp(250) Γ(2, 10) .2
3 exp(250) Γ(2, 10) .2

Setup 1 exp(250) Γ(3, 3) 1
2 exp(250) Γ(2, 10) .2
3 exp(7500) Γ(2, 10) .2

(no HO) 4 exp(90000) Γ(2, 10) .2
(with HO) 4 exp(45000)

HO 1 exp(45000) Γ(3, 3) 1
Term. 1 exp(250) Γ(3, 10) .3

2 exp(250) Γ(2, 10) .2
3 — Γ(2, 10) .2

tions and parameter values in Table 1, as well as the task
and event structures in Figure 3, are based on telecommuni-
cations traffic engineering recommendations and measure-
ments on prototype implementations. Under these assump-
tions, the total average processing time is 2.89 ms per call
and 0.29 ms per location update. The average relative cost
of a location update with respect to a call is about 10%.

The holding time for a call, that is, the time between the
end of the call setup and the start of the call termination, is
assumed to be exponentially distributed with mean 90 sec-
onds.

All three overload algorithms considered in the simu-
lation use the same probe intervals and assessment inter-
vals of 100 ms, and the same minimum fraction allowed,
fmin = 0.005. Experience with evaluation of switches sug-
gests that a timer value of a few hundred milliseconds is
good for a variety of input traffic patterns and system set-
tings. Smaller timer values would result in faster response
during sudden overload but also cause more oscillations
during steady state leading to reduced performance. Table 2
lists the parameter values used in the simulations for the dif-
ferent algorithms. The parameter values for the SiRED al-

Table 2. Parameter values used in the simula-
tions.

Algorithm
Parameter Occupancy SiRED ARO
ρthresh 0.95 – 0.95
φmax 20 – 20

k 3 1 3
w – 0.05 0.02
K – – 300

Qmin – 1 –
Qmax – 4.5 –

gorithm were chosen to produce an average processor occu-
pancy of about 95% under mild to moderate overload condi-
tions (call rates between 160 and 350 calls/s). As discussed
in Section 5.1, SiRED becomes unstable under higher over-
load (call rates above 500 calls/s) and it is not possible to
choose parameter values that give steady 95% occupancy
for the range of call rates considered in the simulation.

The performance metrics used to compare the algorithms
are task delay (time in queue until start of processing),
throughput (number of service requests or calls completed
per second), and allowed fraction of service requests (call
origination or location update events) into the system.

5.1 Performance Under Steady Load

We investigate the performance of the overload control
algorithms when call arrivals are Poisson3, under steady
mean call attempt rates varying between 450 thousand
BHCA (125 calls/s) and 7.2 million BHCA (2000 calls/s),
covering the range from no overload to severe overload. The
location update mean arrival (also a Poisson process) rate

3Other arrival processes can be easily used in our simulator

was set to ten times the mean call rate. For each attempt
rate, calls and location updates were simulated over a 15-
minute period, with the performance metrics averaged over
the whole period.

The sample size associated with the simulation depends
on the performance metric under consideration: for task de-
lay the sample size is determined by the number of simu-
lated calls during the 15-minute period (which ranges from
around 112,500 to 1,800,000, depending on the call load);
for throughput and allowed fraction the sample size is de-
termined by the number of probe intervals in the 15-minute
period, 9000.

2
4

6
8

10
12

500 1000 1500 2000

Delay (ms)

0
20

40
60

80
10

0

500 1000 1500 2000

Fraction Allowed

Loc. update

Call

0
50

0
10

00
15

00

500 1000 1500 2000

Throughput

Loc. update

Call

Call Rate (calls/s)

A
ve

ra
ge

ARO Occupancy SiRED

Figure 4. Average performance metrics ver-
sus call attempt rate by overload control al-
gorithm.

Figure 4 shows the averages of the performance met-
rics versus call attempt rate, for each overload control al-
gorithm4. The sample sizes, mentioned above, give the fol-
lowing maximum simulation errors for the average perfor-
mance metrics in this figure: ±0.1ms for task delay, ±1%
for allowed fraction, and ±3 calls (or location updates)/s for
throughput5. All three algorithms show good, similar per-
formance under multi-class overload conditions. The av-
erage delay stays within reasonable limits (below 12 ms),
though SiRED gives consistently higher delays for heavier
overload conditions. The fraction of allowed events behave
consistently with the strict priority scheme adopted: the
fraction of allowed location updates drops faster than that
of calls, staying close to zero for call rates ≥ 500 calls/s.
Consistently, the average throughput curves indicate that no
location updates are processed under heavier overload. The
system is capable of sustaining a constant call throughput,
under all three overload algorithms.

The fraction allowed and throughput plots in Figure 4
also indicate that SiRED throttles location updates less ag-

4Because of their close proximity, the ARO curves have been overwrit-
ten by the Occupancy curves in some cases.

5In order to obtain the simulation errors, we had to make some assump-
tions about the distributions of these performance metrics. The details have
been skipped for brevity.

gressively than the other two algorithms, under moder-
ate overload conditions (close to 500 calls/s). The reason
for this is the greater instability observed for the feedback
mechanism of this algorithm, which translates into a highly
variable fraction allowed of calls. Figure 5 presents the
inter-quartile ranges (i.e., the difference between the third
and the first quartiles, which provides a measure of varia-
tion for the variable under consideration) of the fractions of
calls and location updates allowed, observed over time dur-
ing the simulation, for the different call attempt rates. The
SiRED fraction allowed variation is about three times larger
for location updates and ten times larger for calls. To further
explore this issue we study the behavior of the algorithms
over time.

0

10

20

30

40

500 1000 1500 2000

Loc. Update

500 1000 1500 2000

Call

Call Rate (calls/s)

In
te

r-
Q

ua
rt

ile
 R

an
ge

ARO Occupancy SiRED

Figure 5. Inter-quartile ranges of fraction al-
lowed versus call attempt rate by overload
control algorithm and event class.

We consider the case of a steady state call rate of 1.38
million BHCA (385 calls/s), considerably above the nomi-
nal capacity of the system. As before, the location update
rate was set to ten times the call rate. Figure 6 shows the be-
havior of the fractions of calls and location updates allowed
(given as averages per second), between the third and the
fifth minutes of operation, for the three overload control al-
gorithms.

The ARO and Occupancy algorithms show similar, sta-
ble fractions allowed with respect to both calls and loca-
tion updates, which are consistent with the strict priority
scheme. The SiRED algorithm, however, presents quite un-
stable fractions allowed in both event classes, which, over
time, leads to throttling that is not consistent with strict pri-
ority. The ARO and Occupancy algorithms show more con-
sistent behavior under steady overload.

5.2 Performance Under Non-Steady Load

In order to study the reactiveness of the algorithms to
sudden changes in arrival rates, we consider the scenario
in which the call and location update processes operate at

0
10

20
30

180 200 220 240 260 280 300

Loc. Update

0
20

60
10

0 Call

Time (sec)

F
ra

ct
io

n
A

llo
w

ed
 (

%
)

ARO Occupancy SiRED

Figure 6. Evolution of fractions allowed under
a steady overload.

0
20

00

300 350 400 450

Delay (ms)

0
40

80

Fraction Allowed: Loc. Update (%)

0
40

80

Fraction Allowed: Call (%)

Time (sec)

ARO Occupancy SiRED

Figure 7. Evolution of performance under non-
steady overload.

mean rates of, respectively, 167 calls/s and 1667 location
updates/s (corresponding to a condition of non-overload)
up to 300 seconds, at which point both rates experience an
eight-fold increase over a period of 1.5 seconds, staying at
that level for two minutes, and then dropping back to their
original non-overload rates in 1.5 seconds. Note that the
arrival process in each interval is still Poisson but with dif-
ferent mean arrival rates. The objective of this simulation
is to study how fast the overload algorithms react to a sud-
den onset of overload and to a sudden cessation of overload.
Figure 7 presents the evolution of the average delay and the
fractions allowed for the three algorithms.

The SiRED algorithm has the best overall performance
with respect to average delay under this overload scenario,
showing no significant changes in average delay during the
onset of overload. The Occupancy algorithm has the worst
delay performance, taking about 38 seconds to recover from
the event rate ramp up and experiencing maximum delay of

4.5 seconds. The ARO algorithm has a much better per-
formance than the Occupancy algorithm, but slightly worse
than SiRED: about 5 seconds to recover and a maximum
delay of 260 milliseconds. The basic reason for the poorer
performance of the Occupancy algorithm is that proces-
sor occupancy measures processed load which cannot be
higher than 100% even when the offered load is very high.
This reduces the processor occupancy measure’s response
to sudden overload in comparison to to either queue length
(SiRED) or call acceptance rate (ARO).

Once again, the SiRED algorithm displays a marked in-
crease in variability of fraction allowed (for call origina-
tions, in this case) under overload, which is not observed for
the other two algorithms. All three algorithms show almost
immediate recovery when the system goes from overload to
non-overload.

In summary, under sudden load ramp up, ARO and
SiRED reduce the response time by an order of magnitude
in comparison to the algorithm that uses processor occu-
pancy only. In comparison to SiRED, ARO experiences a
slightly higher response time under sudden load ramp up but
exhibits more stable fractions allowed under overload. We
also investigate the behavior of the three algorithms under a
variety of other simulation settings (including variations in
Tables 1 and 2, different load patterns, etc.) and find that
the results are qualitatively the same as the ones presented
here.

6 Estimation of Processing Costs

The algorithms and simulations studied so far assume
that the relative processing costs of events in different
classes is known. We investigate the sensitivity of the
algorithms to mis-specification of the relative processing
costs, and derive reliable, measurement-based estimates of
the relative processing costs. Due to space limitations, the
methodology and results of our investigation are described
in [9].

7 Conclusions and Future Extensions

We proposed and evaluated approaches for monitoring
and controlling processor overload due to excessive signal-
ing traffic in a wireless access switch, involving multiple
classes of traffic. All the three multi-class overload control
algorithms developed in this paper, require relative process-
ing cost of each class of traffic. We studied the performance
of these algorithms when these processing costs were mis-
specified and derived measurement-based regression esti-
mates of the relative costs.

In this paper, we have only considered and evaluated the
case where no processing costs are associated with new ser-
vice requests that are eventually throttled. Even though this

is a realistic assumption for some of the cards in the MSC,
it does not necessarily hold for all cards. If processing costs
are associated with new service requests that are throttled
(Scenario 2 in Figure 1), the processing power of the sys-
tem might be reduced considerably. Hence schemes that
appropriately adjust the system load threshold(s) with vari-
ations in the degree of overload need to be developed. The
strict priority throttling scheme described in this paper may
be impractical in situations where there is an interest in al-
lowing events from all classes into the system, at possibly
different, prioritized rates. We need to develop a weighted
fair allocation, for such cases.

References

[1] A. W. Berger and W. Whitt. The Brownian approximation
for rate-control throttles and the G/G/1/C queue. Journal of
Discrete Event Dynamic Systems, 2:685–717, 1992.

[2] U. Bodin, O. Schelen, and S. Pink. Load-tolerant differenti-
ation with active queue management. In In ACM Computer
Communications Review, July 2000.

[3] D. Clark and W. Fang. Explicit allocation for best effort
packet delivery service. IEEE/ACM Transactions on Net-
working, August 1998.

[4] B. L. Cyr, J. S. Kaufman, and P. T. Lee. Load balancing and
overload control in a distributed processing telecommunica-
tions system. United States Patent No. 4,974,256, 1990.

[5] B. T. Doshi and H. Heffes. Analysis of overload control
schemes for a class of distributed switching machines. In
Proceedings of ITC-10, Montreal, June 1983. Section 5.2,
paper 2.

[6] S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Net-
working, 1(4):397–413, August 1993.

[7] B. Hajek. External splitting of point processes. Mathematics
of Operations Research, 10:543–556, 1985.

[8] S. Kasera et al. Fast and robust signaling overload control.
In Proceedings of ICNP, Riverside, CA, November 2001.

[9] S. Kasera et al. Robust multiclass signaling overload control.
Technical report, School of Computing, University of Utah,
www.cs.utah.edu/ kasera/myPapers/icnpReport.pdf, August
2005.

[10] T. LaPorta et al. Cluster mobile switching center for
third generation wireless systems. In Proceedings of IEEE
PIMRC, September 1998.

[11] R. Pillai. A distribute overload control algorithm for delay-
bounded call setup. IEEE/ACM Transactions on Network-
ing, 9:780–789, 2001.

[12] M. Rumsewicz. Analysis of the effects of ss7 message dis-
cards schemes for call completion rates during overload.
IEEE/ACM Transactions on Networking, 1:491–502, 1993.

[13] M. Rumsewicz. Ensuring robust call throughput and fair-
ness for scp overload controls. IEEE/ACM Transactions on
Networking, 3:538–548, 1995.

[14] M. Schwarz. Telecommunications Networks: Protocols,
Modeling and Analysis. Addison-Wesley, 1988.

[15] Technical Specification from CISCO. Distributed weighted
random early detection. http://www.cisco.com/.

