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Abstract

In this paper, we focus on the problem of identifying a
family of collusion resistant protocols that demonstrate a
tradeoff between the number of secrets that users maintain
and the extent of collusion resistance. Towards this end,
we define classes of collusion resistant protocols (modeled
along the complexity classes in algorithmic complexity) and
evaluate the membership of existing protocols as well as
the protocols in the proposed family in these classes. We
also show that this family contains existing protocols for
instantiating security.

Keywords : Security, Instantiating security, Collusion
Resistance

1. Introduction

One way to achieve security, including authentication
and confidentiality, is to require that the sender and receiver
share a collection of secrets such that no other user in the
network knows all the secrets. An impediment in providing
such security is the issue of collusion among users. Specif-
ically, if a group of users collude then they can combine
their collection of secrets and attempt to foil the security of
the communication among the remaining users. One way
to achieve such collusion resistance is to use the full secret
protocol, where each pair of users maintains a unique se-
cret that is only known to those two users. With such an
approach, the collusion among some users does not affect
the remaining users. However, in this approach, the number
of secrets that users maintain is n − 1, and it is difficult to
maintain these secrets if the number of users is large or the
user capability is low (e.g., in ad-hoc networks and sensor
networks).
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Another protocol in this context is the square grid proto-
col from [1] (recalled in Section 2.1). This protocol guaran-
tees security in the absence of collusion while maintaining
only O(

√
n) secrets per user. Specifically, it guarantees that

when two users communicate, the collection of (at most 2)
secrets they use is such that no other user knows all secrets
in that collection. Hence, they can use this collection of se-
crets to establish a session key. However, since other users
may know (different) subsets of this collection, the collu-
sion among such users can compromise the security.

Based on the above discussion, our goal is to identify
a family of protocols that provide a continuum between the
grid protocol (where number of secrets maintained is within
a constant factor of the optimal (cf. [1])) and the full secret
protocol (where the security is as good as it gets). Some
of the desirable properties for the protocols in this family
include: (1) the number of secrets should be proportional to
collusion resistance, and (2) the number secrets used for es-
tablishing session key is small, i.e., O(1), so that the session
key can be established efficiently.

In developing such a family of collusion resistant pro-
tocols, one can use two approaches. In the first approach
(as in [2]), in spite of collusion among any t users, where t
is a threshold specified upfront, all users can communicate
securely. Alternatively, in the second approach, colluding
users may be able to compromise only a subset of commu-
nicating users. In other words, the communication between
a pair of users is compromised only if a specific set(s) of
users collude.

The family of collusion resistant protocols proposed in
this paper focuses on the second approach. Such probabilis-
tic security is useful in many scenarios, especially where
the number of potentially colluding users is large enough
so that the first approach cannot be followed. Furthermore,
this approach is also useful in scenarios where some other
external factors make it difficult for colluding users to ob-
tain encrypted communication. For example, in ad-hoc net-
works or sensor networks, the colluding user(s) may be able
to compromise communication between a pair of users only
if it is in their listening range. Finally, it is straightforward
to combine both approaches where secure communication
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is guaranteed if the number of colluding users is less than
a pre-determined threshold t and probabilistic security is
guaranteed if the number of colluding users exceeds t.

Contributions of the paper.

• We propose a family of collusion resistant protocols
where the level of collusion resistance is proportional
to the number of secrets that users maintain.

• We formally define the notion of collusion resistance.
Using this definition, we identify classes of collusion
resistant protocols. We evaluate the membership of ex-
isting protocols as well as the protocols in the proposed
family in these collusion resistance classes.

• While the proposed family of collusion resistant proto-
cols is based on the square grid protocol from [1], we
show that other variations of the square grid protocol
cannot be used to obtain such a family.

Organization of the paper. In Section 2, we con-
sider the related work and recall the square grid protocol
from [1]. Then, in Section 3, we define what we mean by
collusion resistance of a secret instantiation protocol. Using
this definition, in Section 4, we define collusion resistance
classes. In Section 5, we identify the constraints that should
be met in order to identify a family of collusion resistant
protocols. Using these constraints, in Section 6, we present
our family of collusion resistant protocols. In Section 7, we
present simulation results and analyze them. In Section 8,
we describe related work in this area and conclude in Sec-
tion 9.

2. Classification of Protocols for Instantiating
Security

The approaches for instantiating security can be broadly
classified in terms of those that use asymmetric keys (e.g.,
public/private key) and those that use symmetric keys. In
the former approach (e.g., [3–5]), certificates are used and
initially each user is provided with a certificate signed by a
trusted authority. However, this solution requires high com-
puting power (100-1000 times when compared with sym-
metric keys). For this reason, we focus on solutions that use
shared secrets instead of certificates.

The approaches for providing security with shared se-
crets can be further classified in terms of (1) availability (or,
the lack thereof) of a trusted server during communication
between users, and (2) trust (or, the lack thereof) in the in-
termediate users that may be required to facilitate routing of
messages between communicating users.

Existing protocols such as [6–8] are designed for sys-
tems where a trusted server is available when two users need
to communicate. However, in many systems, this approach
is undesirable (respectively, impossible) as no trusted server

is available when two users need to communicate with each
other. The protocols in the proposed family assume that a
trusted server is unavailable when users need to communi-
cate.

Also, other protocols have been designed where in-
termediate users are trusted (cf. [9–12]). If two non-
neighboring users need to communicate, they route the mes-
sages through the intermediate users that decrypt and re-
encrypt the message. Thus, it suffices that the communi-
cating users share a path such that every user on the path
shares a secret with its predecessor and its successor. How-
ever, in this case, compromise of a small number of users
(and, collusion among them) that act as intermediate users
can severely compromise the security.

Another category of solutions includes solutions where
intermediate users are not trusted. Clearly, in such a solu-
tion, compromise of intermediate users (or collusion among
them) does not affect system security as long as the commu-
nicating users share a secret that is not known to the inter-
mediate users. Therefore, especially in the context of devel-
oping collusion resistant protocols, it is desirable to follow
this approach.

Based on the above discussion, we focus on the security
protocols where (1) shared secrets are used, (2) a trusted
server is not available when two users communicate (such a
trusted server could exist for users to obtain their shared se-
crets in an offline manner), and (3) intermediate nodes are
only trusted as far as routing is concerned. They should
not be able to decrypt any communication they are for-
warding. Examples of such protocols include the protocols
from [1,2]. Since our proposed family of collusion resistant
protocols is based on the protocol from [1], we recall this
protocol, next.

2.1. The Square Grid Protocol

In this section, we recall the square grid protocol [1] for
instantiating security. In this protocol, n users are arranged
in a logical square grid of size

√
n x

√
n. Each location,

〈i, j〉, 0 ≤ i, j <
√

n, in the grid is associated with a user
u〈i,j〉 and a grid secret k〈i,j〉. Each user knows all the grid
secrets that are along its row and column. For example, in
Figure 1, the grid secret associated with 〈1, 1〉 is known to
users at locations 〈j, 1〉, 〈1, j〉, 0 ≤ j ≤ 3. Additionally,
each user maintains a direct secret with users in its row and
column. This direct secret is not known to any other user.
For example, user u〈1,2〉 shares a direct secret with user,
u〈1,3〉, which is located in the same row (cf. Figure 1).

Now, consider the case where user A wants to set up a
session key with user B. Let the locations of A and B be
〈j1, k1〉 and 〈j2, k2〉 respectively. In this case, A selects the
session key and encrypts it using the following secret selec-
tion protocol. Along with the encrypted session key, it also
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Figure 1. Single grid protocol: A node marked
〈j, k〉 is associated with user u〈j,k〉 and grid
secret k〈j,k〉

sends its own grid location (in plain text). If multiple secrets
are selected by A then a combination of those secrets (using
hash functions like MD5) is used to encrypt the session key.

Secret selection protocol for session key establishment
for users at 〈j1, k1〉 and 〈j2, k2〉
// If users are neither in same row nor in same column
If (j1 �=j2 ∧ k1 �=k2)

Use the grid secrets k〈j1,k2〉 and k〈j2,k1〉
Else
// If users are in the same row or column

Use the direct secret between u〈j1,k1〉 and u〈j2,k2〉

Theorem 2.1 The above protocol ensures that the col-
lection of secrets used by two communicating users is not
known to any other user in the system. Hence, in the ab-
sence of collusion, the above protocol can be used for es-
tablishing the session key. (cf. [1] for proof.)

Remark. Note that in this paper, we only focus on
the issue of secret distribution and secret selection. Once
the secret(s) is selected, existing approaches can be used to
establish a session key while providing resistance against
attacks such as replay of old messages. These approaches
include the use of ‘time’ and/or ‘nonces’,

3. Defining Collusion Resistance of Security
Protocols

In this section, we precisely define how we count the
secrets maintained by users and how we compute the collu-
sion resistance of a protocol. We are interested in protocols
where the secrets maintained by a user are independent, i.e.,
even if an attacker knows a subset of the secrets that a user
has, it is not be possible for the attacker to discover the other
secrets (e.g., through cryptanalytic attacks) that the user has.
Thus, even if two users use a set of secrets to ensure secu-
rity and the attacker is aware of all but one of those secrets,
the attacker cannot compromise that communication.

Furthermore, to compute the space requirement for se-
crets, we count all secrets that are needed to be stored by

the user. To illustrate this issue, consider the case where a
small number, say x, of secrets are used initially to generate
a large number, say y, of new secrets by some mathematical
manipulation (e.g., using those in evaluating certain poly-
nomials) of the original secrets. In such a case, if these y
secrets are stored by the user then the space requirement
for this case is y. However, if these secrets are computed
on-the-fly then the space requirement is x.

Intruder/Attacker/Colluder Model. We assume the
standard node-compromise attacker model (e.g., [2, 9, 10,
12–14]). If a user has been compromised by an attacker then
the attacker can utilize all the secrets that the user had. It
can do so either passively, i.e., by just listening to messages
and attempting to decrypt them if possible. Or, it can do so
actively, for example, it can attempt to impersonate another
user. The colluding users (attackers) can pool together their
secrets in order to break communication security.

Also, we make no assumptions about mobility in the net-
work. Thus, the users may be mobile or static. We only as-
sume that an orthogonal approach is used to route messages
(even in the presence of mobility) and to deal with denial
of service attacks. In other words, we only assume that any
message sent by legitimate users is delivered (even if users
are mobile or the system is subject to a denial of service at-
tack). The approaches used for routing or for dealing with
denial of service attacks are outside the scope of this paper.
(Note that routing does not need to be secure; it only needs
to be reliable.)

When users collude, they can combine the secrets they
know in order to compromise communication among the
remaining users. To study the effect of such collusion, con-
sider a system with n users. In such a system, there are a
total of n(n − 1) pairs of communicating users. (For sim-
plicity, we consider 〈j, k〉 to be a different pair than 〈k, j〉).
Hence, when a set of users collude, some of these pairs can
no longer communicate securely, as all the secrets they use
for achieving security are known to the colluding users. For
example, in Figure 2, if users u〈0,0〉 and u〈1,1〉 collude then
user u〈2,0〉 cannot communicate securely with u〈3,1〉. Our
definition of collusion resistance is based on the effect of
the collusion on these pairs. First, we consider two such
plausible definitions, and argue that they are inappropriate
because either they do not capture the true collusion resis-
tance of the protocol or they are difficult to use.

Attempt 1: A protocol is collusion resistant to x users if
at least one pair of users can communicate securely even if
any subset of x users collude.

This definition is inappropriate for the following reason:
Consider any secret distribution protocol for users 1 . . . n.
Without loss of generality, let n be even. In this proto-
col, add an additional secret between (1, 2), (3, 4), . . . ,
(n − 1, n). With such modification, if the number of col-
luding users is less than n/2 then at least one pair of users
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can communicate securely. Thus, if we were to use the
above definition then the protocol will be collusion resis-
tant to n/2 users. Since this modification involves addition
of one secret to each user, any secret distribution protocol
can be trivially modified to get resistance to n/2 colluding
users. In other words, the above definition fails to identify
the true collusion resistance of different protocols. There-
fore, the definition of collusion resistance should require a
‘significant number’ of pairs to be unaffected. Hence, we
consider the following definition.

Attempt 2: A protocol is collusion resistant to x users if
at least half of the pairs of users can communicate securely
even if any subset of x users collude.

Although this definition does allow one to distinguish be-
tween collusion resistance of different protocols, the choice
of half is arbitrary. Moreover, using this definition, it may
be difficult to compute the collusion resistance of a partic-
ular protocol. Also, the collusion resistance varies widely
if we change the requirement about the percentage of unaf-
fected pairs.

Yet another problem with the above definition is that it
does not allow us to identify the trend in the effect of collu-
sion. Specifically, as the number of users in a system grows,
it is desirable that the number of colluding users required to
inflict the same disruption, computed in terms of the per-
centage of pairs affected, should also increase. Therefore,
the definition of collusion resistance should be such that we
can say ‘a protocol is collusion resistant to f(n) users if n is
the total number of users in the system’. With this intuition,
we now define the notion of a collusion resistance function.

Definition. A function C : N �−→ N , is a collusion
resistance function for a protocol P iff

limn→∞
NumUnAffected(n,C (n))

TotalPairs(n) > 0, where,
NumUnAffected(n, C (n)) = the minimum number of

pairs in a system of n users that can communicate securely
even if any subset of C (n) users collude, and,

TotalPairs(n) = All possible pairs in a system with n
users =n(n − 1)

Definition. We say that a protocol P with n users is
collusion resistant to C (n) users iff C is a collusion resis-
tance function of P .

Remark. Note that, NumUnAffected(n,C (n))
TotalPairs(n) is always

in the range [0, 1]. Thus, the above definition requires
that, as the system size increases, the ratio converges to
a non-zero constant. A reader may wonder if we could
have defined that a protocol is collusion resistant to C (n)
users if the number of affected pairs is insignificant, i.e.,
limn→∞

NumUnAffected(n,C (n))
TotalPairs(n) = 1. We note that such

a definition would be viable. We consider this issue after
identifying the collusion resistance of the square grid proto-
col.

0, 0 0, 1 0, 2 0, 3

1, 3

2, 3

1, 2

2, 2

3, 2

2, 1

1, 0

2, 0

3, 13, 0 3, 3

1, 1

Colluding Users

Unaffected Pairs

Figure 2. Effect of collusion on square grid
protocol

Example: Collusion resistance of the square grid pro-
tocol. Observe that, in the square grid protocol in [1], the
worst case disruption due to collusion occurs if the collud-
ing users are in different rows and different columns. More-
over, without loss of generality, the grid locations of such
colluding users can be renamed so that they lie along the di-
agonal of the square grid as such renaming does not affect
the nature of secrets known to the colluding users. Thus, if
r users collude, we can assume that they are at locations,
〈0, 0〉, 〈1, 1〉 . . . 〈r − 1, r − 1〉, along the diagonal.

Now, we show that the function, C (n) = 	
√

n
2 
 is a

collusion resistance function for the square grid protocol.
To verify this, consider the case where the first 	

√
n

2 
 users
along the diagonal collude (cf. Figure 2). The grid secrets
of users in the top 	

√
n

2 
 rows and left 	
√

n
2 
 columns are

compromised. However, the users in the lower right quad-
rant (cf. Figure 2) are not affected if they communicate
within themselves. Since the number of users that are not
affected is at least n

4 , the number of unaffected pairs is at
least n

4 .(n
4 − 1). Now,

limn→∞
n
4 .( n

4 −1)

n.(n−1) = 1
16 > 0

From the above result, C (n) = 	
√

n
2 
 is a collusion re-

sistance function of the square grid protocol. In general,
a function c.

√
n is a collusion resistance function for the

square grid protocol if 0 < c < 1. Moreover, 1.
√

n is not a
collusion resistance function because if all

√
n users along

the diagonal collude then, all the grid secrets are compro-
mised. Thus, a user is able to communicate securely only
with those users with which it maintains a direct secret. In
other words, users will be able to communicate securely
with users in their rows and columns. As each row (col-
umn) has

√
n users, the number of pairs in a row (column)

is at most n. Since there are
√

n rows and
√

n columns, the
number of unaffected pairs is atmost, 2n

√
n. And,

limn→∞
2n

√
n

n.(n−1) = limn→∞ 1√
n

= 0
Remark. If we had used the definition ‘a protocol is col-

lusion resistant to C (n) users if the number of affected pairs

4



is insignificant, i.e., limn→∞
NumUnAffected(n,C (n))

TotalPairs(n) = 1’
then it could be shown that the square grid protocol is col-
lusion resistant to n(1/2)−ε users where ε is any positive
number. We leave this proof as an exercise to the reader.
Therefore, the conclusion reached about the collusion re-
sistance of the grid protocol is essentially the same as that
reached with our definition. We note that this observation is
true for all the protocols considered in this paper.

4. Collusion Resistance Classes

Based on the above discussion of the square grid proto-
col, we now define, along the lines of complexity classes for
algorithms, the notion of collusion resistance classes.

Definition. Ωr(f(n)) is the set of key distribution pro-
tocols for which c.f(n) is a collusion resistance function
for some (positive) value of c. In other words,

Ωr(f(n)) = {P | ∃c : c > 0 : c.f(n) is a collusion
resistance function of P }

Definition. Or(f(n)) is the set of key distribution pro-
tocols for which c.f(n) is not a collusion resistance func-
tion for some (positive) value of c. In other words,

Or(f(n)) = {P | ∃c : c > 0 : c.f(n) is not a collusion
resistance function of P }

Definition. Θr(f(n)) is the set of key distribution pro-
tocols that are both in Ωr(f(n)) and Or(f(n)). In other
words,

Θr(f(n)) = Ωr(f(n)) ∩ Or(f(n))
Now, based on these definitions and the above discussion

about the square grid protocol, we have:
Observation 4.0 Given ε and δ such that 0 ≤ δ ≤ ε, we

have

• Ωr(nε) ⊆ Ωr(nδ)

• Or(nδ) ⊆ Or(nε)

Theorem 4.1 The square grid protocol ∈ Θr(
√

n).
Remark. Although the above definitions are modeled

along the complexity classes for algorithms, not all results
about complexity classes may apply in this context and vice
versa. For example, the above definitions are meaningful
only if f(n) is linear or a slower growing function. Also,
since f(n) = n is not a collusion resistance function for any
protocol (because if all users collude then none can com-
municate securely), Or(n) consists of all secret distribution
protocols.

Example: Collusion resistance of the full secret pro-
tocol. Now, we describe the full secret protocol and its
collusion resistance. In this protocol, there is a unique se-
cret associated with every pair of users. Thus, for a system
of n users, each user maintains n − 1 secrets.

The function C (n) = 	n
2 
 is a collusion resistance func-

tion for the full secret protocol. To verify this, we note

that the pairwise secrets shared by the remaining �n
2 � users

are not compromised due to the collusion. Thus, the num-
ber of pairs that are unaffected due to collusion is at least
n
2 .(n

2 − 1). Now,

limn→∞
n
2 .( n

2 −1)

n.(n−1) = 1
4 > 0

From this result, we note that, C (n) = 	n
2 
, is a collu-

sion resistance function for the full secret protocol. Thus,
we have,

Theorem 4.2 The full secret protocol ∈ Θr(n).
Tradeoff between number of secrets and collusion re-

sistance. The full secret protocol is in Θr(n) and requires
each user to store Θ(n) secrets. The collusion resistance
provided by the full secret protocol is, in some sense, the
maximum collusion resistance offered by any secret distri-
bution protocol. However, this protocol also requires the
users to store the maximum number of secrets. On the other
hand, the square grid protocol is in Θr(

√
n) and requires

each user to store Θ(
√

n) secrets. The number of secrets
stored by a user in the square grid protocol (cf. [1]) is within
a factor of the minimum number of secrets that need to be
stored in any secret distribution protocol that guarantees au-
thentication and confidentiality in the absence of collusion.
However, the collusion resistance provided by the square
grid protocol is also lower than the full secret protocol.

Now, consider the following question: Is it possible to
identify a family of protocols that provide a tradeoff be-
tween the number of secrets that users maintain and collu-
sion resistance. Specifically, are there protocols in Θr(nδ),
1/2 ≤ δ ≤ 1, where the number of secrets maintained by
users is Θ(nε), 1/2 ≤ ε ≤ 1. Our approach to identify this
family is based on variations of the square grid protocol. We
consider three variations of the square grid protocol in Sec-
tion 5. Then, in Section 6 we present the family of protocols
that achieves the above requirements.

5. Constraints on Family of Collusion Resistant
Protocols

In this section, we consider three variations of the square
grid protocol. While these variations fail to identify the de-
sired family of collusion resistant protocols, they identify
three of the desired properties, (1) need to use a single grid
instead of multiple grids, (2) need to use 2D grids instead
of higher dimensional grids, and (3) need to use symmetric
grids where the number of users in a row is (approximately)
the same as that in column, that should be met by protocols
in this family. Hence, a reader who is willing to take these
properties for granted can skip this section.

Use of multiple grids. One way to increase collusion
resistance of the grid protocol is to use multiple grids, as
in [2]. Specifically, in [2], authors consider multiple square
grids. In each grid, the locations in that grid are associated
with a user and a secret. Furthermore, every user is assigned
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a location in every grid. Now, when two users communi-
cate, they exchange their location in all the grids. Using
these locations, they identify the grid secrets (if any) from
every grid. (The protocol in [2] does not maintain direct
secrets.)

In [2], authors show that if the number of rows (respec-
tively, columns) is prime, then the users can be arranged in
such a way that if two users are in the same row or column
in one grid then they cannot be in the same row or column
in any other grids. Thus, if t grids are maintained then any
two users can use grid secrets from at least t−1 grids. Thus,
when two users communicate, they need to use upto 2t se-
crets to establish the session key. It follows that if we want
to keep the number of secrets used for establishing session
key to be O(1), t must also be O(1).

Now, consider the collusion resistance class for the pro-
tocol in [2] where t grids are maintained. If the diagonal
users from all grids collude then they know all the secrets
in the system. Hence, no two users can communicate se-
curely. Hence, t

√
n is not a collusion resistance function

for [2]. Similar to the square grid protocol, we can show
that 1

2

√
n is a collusion resistance function for [2]. Thus,

we have
Theorem 5.1 The multiple grid protocol from [2] where

O(1) grids are maintained is in Θr(
√

n).
Grid Protocol for Higher Dimensions. In the con-

text of higher dimensional grid, we consider 3D grids. Each
location 〈i, j, k〉, 0 ≤ i, j, k < n1/3, is associated with a
user u〈i,j,k〉 and a grid secret k〈i,j,k〉. Each user gets the
grid secrets associated with the (3) planes it is in.2 Also, the
user maintains a direct secret with users in its planes. Thus,
the number of secrets maintained by the user is Θ(n2/3).
Now, when two users communicate, if they are in the same
plane, they use the direct secret. Otherwise, they use all
the grid secrets shared by them. Now, consider the case
where the users on the diagonal of this grid, i.e., 〈0, 0, 0〉,
〈1, 1, 1〉, . . . 〈n1/3−1, n1/3−1, n1/3−1〉, collude. Since all
grid secrets are thus compromised, users can communicate
with only those with whom they maintain direct secrets. In
other words, a user can communicate securely with only
those users in its planes. As each plane has n2/3 users, the
number of pairs that can communicate securely is atmost,
n2/3.n2/3. Since there are 3n1/3 planes in the grid, the to-
tal number of unaffected pairs is atmost, 3n1/3.n2/3.n2/3.
Now,

limn→∞ 3n1/3.n2/3.n2/3

n(n−1) = limn→∞ 1
n1/3 = 0

As in the case of the square grid protocol, if we con-

2A reader may wonder if we could have allowed a user to only maintain
the grid secrets in the (3) lines (instead of planes) it is in. With such an
approach, we could reduce the number of secrets to n1/3. However, with
this approach, it is not possible for all users to communicate securely even
in the absence of collusion. For example, users located at 〈0, 0, 0〉 and
〈1, 1, 1〉 do not have common secrets that they can use.

sider that n1/3

2 users on the diagonal collude then, we have
at least n/8 users who can communicate securely within
themselves. Therefore, similar to the square grid protocol,
we can show that n1/3

2 is a collusion resistance function for
the 3D grid. Thus,

Theorem 5.1 The 3D grid protocol ∈ Θr(n1/3).
Moreover, the number of secrets maintained by the users

is Θ(n2/3). Thus, the collusion resistance of the 3D grid
protocol is not as good as the square grid protocol even
though it requires the users to store more secrets.

Rectangular Grid Protocol. Based on the discus-
sion about protocols with higher dimensional grid, it is clear
that to identify a family of collusion resistant protocols, we
should focus on 2D grids. One variation of the 2D grid is a
rectangular grid of size lxb, where l �= b. In this case, the
number of users is l.b. The square grid protocol from [1] can
be trivially extended to such rectangular grids. The reason
for considering such protocols comes from the observation
that if b = 1 then this protocol is identical to the full secret
protocol. Specifically, if b = 1 then all users are in a single
row. Hence, there are no grid secrets and there is a direct
secret between every pair of users.

Now, we evaluate the collusion resistance of such a pro-
tocol. Without loss of generality, we consider a grid with
l > b. Consider the case where the users on the diagonal,
〈0, 0〉, 〈1, 1〉, . . . 〈b, b〉, collude. Thus, all the grid secrets are
compromised and a user can communicate securely with
only those users with which it maintains a direct secret.
Thus, secure communication is possible only along the rows
and columns of the rectangular grid. As each column has b
users and the number of columns is l, the number of un-
affected pairs in the columns is atmost l.b2. Likewise, the
number of unaffected pairs in the rows is atmost b.l2. Now,

limn→∞ l.b2+l2.b
n.(n−1) = limn→∞

n
b .b2+( n

b )2.b

n.(n−1) = limn→∞ 1
b

Thus, if b is O(1) (i.e., independent of n) then the above
limit is non-zero. However, if b is of the form f(n) where
limn→∞f(n) = ∞ then the above limit is zero. Thus,
the above protocol is collusion resistant to b users only if
b = O(1). Moreover, since l > b then the collusion re-
sistance of the rectangular grid protocol is no better than
that of the square grid protocol. In other words, to iden-
tify the family of collusion resistant protocols, we should
focus on protocols where the number of users in a row is
(approximately) equal to the number of users in a column.
We identify such a protocol family in Section 6.

6. Proposed Family of Collusion Resistant
Protocols

Based on our discussion in Section 5, to identify a fam-
ily of collusion resistant protocols, we should focus on 2D
grids where the number of users in a row is approximately

6



Grid locations with users

Figure 3. User assignment in the diagonal
protocol

the same as that in a column. With this intuition, in this
section, we propose a family of collusion resistant proto-
cols that (1) are in Θr(nε), 1/2 ≤ ε ≤ 1, (2) maintain
Θ(nε), 1/2 ≤ ε ≤ 1, secrets, and (3) the level of collu-
sion resistance is proportional to the number of secrets that
users maintain. Specifically, in Section 6.1, we present our
diagonal protocol family and in Section 6.2, we identify its
collusion resistance.

6.1. Diagonal Protocol Family

For a given set of n users, a protocol in this family ar-
ranges these users in a grid of size kxk, where k ≥ √

n.
The value used to instantiate k identifies different members
in this family. Similar to the square grid protocol, each grid
location 〈i, j〉 is associated with a grid secret, k〈i,j〉. How-
ever, as there are more grid locations than users, some grid
locations are not associated with users. We assign the users
to grid locations along the diagonal. First, we arrange k
users along the diagonal, i.e., these users are at locations
〈x, y〉 where (y−x) ≡ 0 mod k. Then, another k users are
assigned to grid locations 〈x, y〉, where, (y−x) ≡ 1 mod k.
We continue assigning the remaining users, to grid loca-
tions, (y − x) ≡ 2 mod k, (y − x) ≡ 3 mod k, and so
on, until all the users are assigned a grid location. (cf. Fig-
ure 3 where 36 users are arranged in a 8x8 grid). Observe
that with such assignment, the number of users in a row is
approximately the same as the number of users in a column.

The secret distribution is identical to that of the square
grid protocol. Specifically, a user gets the grid secrets in
its row and in its column. And, each user shares a direct
secret with users in its row and column. Moreover, the se-
cret selection protocol is the same as that of the square grid
protocol (recalled in Section 2.1). Now, we show that by
appropriate instantiation of k, we can obtain the square grid
protocol and the full secret protocol.

Obtaining the square grid protocol. If we instanti-
ate k =

√
n in the diagonal protocol family then all grid

locations will be associated with users. Thus, the resulting
protocol is the same as the square grid protocol.

Obtaining the full secret protocol. If we instantiate
k = n in the diagonal protocol family then all users will
be arranged along the diagonal. Thus, no direct secrets are
maintained and each user maintains 2(n − 1) grid secrets.
Consider the secrets maintained by a user, say at location
〈j, j〉. When this user communicates with a user at loca-
tion 〈l, l〉, it uses secrets at locations 〈j, l〉 and 〈l, j〉. Ob-
serve that while communicating with any other user, 〈j, j〉
(respectively, 〈l, l〉) uses neither of these secrets. Hence,
instead of maintaining the secrets at locations 〈j, l〉 and
〈l, j〉, the user at locations 〈j, j〉 (respectively, 〈l, l〉) can
only maintain a combination of these secrets. With this re-
vision, the protocol is the same as the full secret protocol.

Remark. In the subsequent discussion, for brevity, we
use the term ‘a diagonal protocol’ to mean ‘a member in the
diagonal protocol family’.

6.2. Collusion Resistance of Diagonal Protocol

In the diagonal protocol, if a kxk grid is used for a group
of n users then users will be assigned to locations 〈x, y〉
where y − x ≡ w mod k, where 0 ≤ w < �n/k�. For
simplicity, we assume that n/k is an integer and ignore the
fact that some locations where y− x ≡ (�n/k�− 1) mod k
are not associated with users. This assumption is reasonable
as we are interested in asymptotic behavior of the protocol
while computing its collusion resistance.

Now, we consider the collusion resistance of such a pro-
tocol. Similar to the protocol in [1], the colluding users
cause the maximum disruption when they are in different
rows and columns. Hence, without loss of generality, we
can assume that if there are r colluding users then they are
at locations 〈0, 0〉, 〈1, 1〉 . . . 〈r − 1, r − 1〉, along the diago-
nal.

We consider the case where there are k/2 colluding users.
Similar to our discussion in Section 3, we can see that that
the users in the lower right quadrant can communicate se-
curely within themselves. Now, we compute the number of
users in this quadrant. The users in the lower right quad-
rant are at locations 〈x, y〉 where x ≥ k/2 and y ≥ k/2.
The number of such users where y − x = 0 mod k is k/2.
Also, the number of such users where y − x = 1 mod k is
k/2 − 1, and so on. Thus, the number of users in the lower
right quadrant is:

k/2 + (k/2 − 1) + ... + (k/2 − n/k + 1)
≥ (k/2 − n/k) ∗ n/k
≥ n/2 − (n/k)2

Now, if k = nε where 1/2 < ε < 1 then (n/k)2 is o(n).
Therefore, the number of users in the lower right quadrant
is n/2 − o(n). Thus, if k = nε, 1/2 < ε < 1, then the
number of users in the lower right quadrant is Θ(n). And,
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the number of unaffected pairs is Θ(n2). It follows that the
diagonal protocol with a kxk grid is resistant to collusion of
k/2 users.

Furthermore, if all k users along the diagonal collude
then all grid secrets are compromised. Thus, a user can
securely communicate with only users in its row/column.
There are n/k users in each row/column. And, there are k
rows and columns. Hence, the number of unaffected pairs is
at most 2k(n/k)2. If k = nε then the number of unaffected
pairs is atmost 2(n2−ε). It follows that the diagonal protocol
is not collusion resistant to k users.

Based on the above discussion, we have:
Theorem 6.1 The diagonal protocol with a nε x nε grid

∈ Θr(nε).
Thus, the diagonal protocol family consists of protocols

(one for each value of ε) such that the number of secrets
maintained by users in these protocols is proportional to the
collusion resistance provided by them.

7. Analysis of Collusion Resistance

In this section, we compare the collusion resistance of
different protocols in the diagonal protocol family. Specif-
ically, we consider the protocols in the diagonal proto-
col family where the grid size is kxk, where k is either√

n, n2/3, n3/4 or n4/5. Of these, k =
√

n corresponds to
the protocol from [1]. We compare collusion resistance of
these protocols in two cases (1) where the colluding users
are selected in such a way that they cause the maximum
number of user pairs to be affected, and (2) where collud-
ing users are selected randomly. The former corresponds
to the case where colluding users can select their grid loca-
tions whereas the latter corresponds to the case where the
colluding users do not have such capability.

In these simulations, we also consider a randomized ver-
sion of the protocol family from Section 6. To compare this
with the diagonal protocol family, observe that in a diago-
nal protocol, deterministic approach is used to ensure that
the number of users in a row is approximately equal to the
number of users is a column. An alternative approach is to
randomly assign grid locations to users with uniform proba-
bility. With such an approach, the expected number of users
in a row is the same as the expected number of users in a
column. Hence, it is expected that such a protocol can be
used in identifying a family of collusion resistant protocols.
Unfortunately, in this protocol, it is difficult to identify the
worst-case disruption that can occur due to colluding users.
For this reason, in this protocol, we consider the case where
a random collection of users is selected to collude.

In the following simulation results, the term ‘Grid’ de-
notes the protocol in [1] (also equivalent to the diagonal pro-
tocol with k =

√
n). The term ‘Diagonal k = nε’ denotes

the diagonal protocol with nεxnε grid where colluding users

are selected along the diagonal. And, as discussed in Sec-
tion 3, this causes maximum user pairs to be affected. The
term ‘Random’ denotes the above random distribution of
users where colluding users are selected at random. Finally,
the term ‘Diagonal k = nε with random collusion’ denotes
the diagonal protocol with nεxnε grid where colluding users
are selected randomly. For the experiments with random
collusion, we repeated the simulation five times and took
the average of these simulations. For other experiments,
repetition is not required as the calculation is deterministic.

In Figures 4(a), (b) and (c), respectively, we show the
effect of, 5, 10 and 20 colluding users. From these figures,
we see that, as the number of users increases, the number
of affected pairs in the diagonal protocol with k = n2/3 is
less than that in the grid protocol. The percentage of user
pairs affected due to random collusion is slightly less than
the case where colluding users are along the diagonal. This
is due to the fact that with random colluding users, some
of the colluding users are in the same row/column. More-
over, even with random colluding users, the diagonal proto-
col provides slightly better collusion resistance when com-
pared to the case where users are randomly distributed in
the grid. In other words, even if the colluding users were to
be selected at random, it is beneficial to arrange the users
deterministically.

Figure 5 compares collusion resistance of different pro-
tocols in the diagonal protocol family. When users are ar-
ranged in a nεxnε grid, the number of pairs affected due to
collusion decreases as the value of ε increases. Thus, the
level of collusion resistance is proportional to the number
of secrets that users maintain.

Finally, Figure 6 evaluates the effect of different collu-
sion resistance functions for the protocols in the diagonal
protocol family. Based on the discussion in Section 6, for
a diagonal protocol with nεxnε grid, c.nε is a collusion re-
sistance function if c < 1. We consider the number of af-
fected user pairs for the case where c equals 1/2,1/3, ..., 1/6.
As shown in Figure 6, the number of user pairs affected
reaches a constant as the number of users is increased. This
validates the expected result that in a diagonal protocol with
nεxnε grid, the percentage of pairs unaffected by collusion
reaches a non-zero limit if the number of colluding users is
c.nε where c < 1.

8. Related Work

Existing work on secret instantiation can be classified
based on whether intermediate users are trusted or not. In
[9–12], where the intermediate users are trusted, when two
users communicate, their communication is decrypted and
re-encrypted by intermediate users. Thus, in these proto-
cols, even in the absence of collusion, some (several) pairs
of users cannot communicate securely. By contrast, the pro-
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Figure 4. Effect of collusion on various protocols. (a) 5 colluding users (b) 10 colluding users and
(c) 20 colluding users
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Figure 5. Collusion in diagonal protocol for different k values. (a) 5 colluding users (b) 10 colluding
users and (c) 20 colluding users

tocols in [1, 2], ensure that any two pair of users can com-
municate securely.

Existing work on collusion resistance [14, 15] has fo-
cused on approaches for ensuring that all pairs of users can
communicate securely even if some threshold (t) number
of users are compromised. They do not focus on the situ-
ation where the colluding users exceed this threshold. By
contrast, our work has focused on what happens if the num-
ber of colluding users exceeds such threshold and therefore
only a subset of user-pairs can communicate securely. Our
approach can be combined with previous work so that if col-
luding users is less than t then all pairs of users can com-
municate securely. However, when a larger number of users
collude, only some pairs can communicate securely.

9. Conclusion

In this paper, we presented a family of collusion resistant
protocols, the diagonal protocol family, where the level of
collusion resistance is proportional to the number of secrets
that users maintain. The proposed protocol family is based
on the square grid protocol from [1]. We showed that other
variations of this protocol, however, failed to identify the
family of collusion resistant protocols.

We defined the notion of collusion resistance classes. We
showed that these collusion resistance classes could be ef-
fectively used to compare the collusion resistance of differ-

ent protocols. We identified membership of existing pro-
tocols as well as protocols in the proposed family in these
classes. We also validated these results through simulation.
Specifically, we showed that given a collusion resistance
function C (n) of a protocol, the percentage of unaffected
pairs due to collusion of C (n) users in a system of n users
is unchanged as the number of users is increased.

For reasons of space, we did not discuss in detail how
the user obtains the initial secrets as this issue is orthogo-
nal to the issue of what secrets a user should get. A user
may obtain these initial secrets in several ways, e.g., a user
may obtain these secrets by initially visiting (respectively,
periodically revisiting) a trusted server. Also, the problem
we discussed is orthogonal to the issue of secret mainte-
nance [16], where users change their secrets periodically to
thwart cryptanalytic attacks.

One of the open questions from this work is the opti-
mality of the number of secrets maintained in order to pro-
vide the required level of collusion resistance. In the pro-
posed diagonal protocol family, if Θ(nε) secrets are main-
tained then the resulting protocol is in Θr(nε). For ε = 1/2
(where we obtain the protocol from [1]), the number of se-
crets maintained is within a constant factor of the optimal.
Also, for ε = 1, the number of secrets maintained by a user
is within a constant factor of optimal. However, the opti-
mality is not known for intermediate values.
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