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Abstract
We present a game-theoretic study of the selfish behavior of

TCP users when they are allowed to use multiple concurrent
TCP connections so as to maximize their goodputs or other
utility functions. We refer to this as the TCP connection game.
A central question we ask is whether there is a Nash Equilib-
rium in such a game, and if it exists, whether the network op-
erates efficiently at such a Nash Equilibrium. Combined with
the well known PFTK TCP Model [12], we study this question
for three utility functions that differ in how they capture user
behavior. The bad news is that the loss of efficiency or price
of anarchy can be arbitrarily large if users have no resource
limitations and are not socially responsible. The good news
is that, if either of these two factors is considered, efficiency
loss is bounded. This may partly explain why there will be no
congestion collapse if many users use multiple connections.

1. Introduction

The conventional wisdom is that the stability of the Internet
is due to TCP’s congestion control mechanisms. For exam-
ple, [1] uses a game-theoretic study to show that TCP-Reno
and DropTail buffer can make the network operate efficiently
when end points are allowed to adjust the increase and de-
crease parameters of TCP. On the other hand, [10] argues that
both network and user behavior should be considered regard-
ing the stability issue of the Internet. This paper is an attempt
to understand the impact of user’s behavior on the efficiency
of the Internet.

Using a game-theoretic framework, we evaluate the impact
of greedy behavior of users when allowed to open multiple
TCP connections. One of our motivations comes from the
observation of the trend that more and more users use some
software agents (e.g.,FlashGet [3]) for concurrent download-
ing in order to accelerate file transfers [7]. Specifically, we are
interested in a scenario in which a number of users compete
for the capacity of a single bottleneck link. Users have infi-
nite amounts of data to send, and they are allowed to open a
number of concurrent connections. This scenario can be mod-
elled as a non-cooperative game in which players are individ-
ual users. The strategy of each player is the number of TCP
connections. Each player tries to maximize its own utility. We
call this game the TCP Connection Game.

For this type of general game, we study three specific
games that differ from each other in their utility functions. In
game 1, a user’s utility function corresponds to the long-term
average goodput (packets per second transferred by the bot-

tleneck link without being discarded). In game 2, users take
into account the potential cost incurred on the system and on
themselves. This cost is assumed proportional to the aggre-
gate sending rate of all connections opened by all users. The
cost incurred by each user is then the aggregate sending rate
of all connections opened by this user. This cost not only can
be interpreted as the packet sending cost for a user, but also
the system-wide network resource consumed by the offered
traffic. Thus in this sense, a user concerned with this cost can
also be thought of as being socially responsible. In game 3, in
addition to the packet sending cost, we introduce another term
specific only to users and that accounts for the cost of main-
taining open connections. We also allow users to have dif-
ferent computation powers. A more powerful user has more
computation resource to support more TCP connections. For
all three games, the Nash Equilibrium (NE) can be thought of
as a combination of the number of connections of all users,
at which no user can benefit from increasing or decreasing
its number of connections. In this paper, we only study pure
strategy NE.

We are interested in the following questions. Do there ex-
ist Nash Equilibria (NE) for these TCP connection games? If
so, what is the loss of efficiency and price of anarchy of the
network operating at a NE? How can the behaviors of users
potentially affect the efficiency of the NE? For example, how
can the socially responsible behavior of users affect the effi-
ciency of the NE? Are users treated fairly at NE? Are NEs
stable in the sense that any deviation from NE will converge
back to NE?

We find that, in game 1, when users do not have any re-
source constraints and are not socially responsible, the loss of
efficiency or the price of anarchy can be arbitrarily large. This
is in contrast to the conclusion in [1] that the network oper-
ates efficiently with TCP-Reno loss recovery mechanism and
DropTail queue even when users are capable of freely choos-
ing additive increase and multiplicative decrease parameters
of TCP. However, we find that in games 2 and 3, the efficiency
loss is bounded if users are resource constrained and socially
responsible. We also show that there exists a unique NE for
game 2 and that it is locally stable, namely, any small devia-
tion from NE will eventually converge back to NE. And, we
have observed that it is very likely that the NE is globally sta-
ble as well. We also observe that integer NEs very likely exist
for the real case that users are only allowed to open an integer
number of connections. Last, in game 3, we show that a user
with greater computation power is able to obtain greater good-
put at the NE than a user with smaller computation power.



Related work. [1] studies a class of TCP games in which
each user controls a single TCP connection, and the strategy
of each user is a pair of values corresponding to the additive
increase parameter α and multiplicative decrease parameter
β. Our work differs from their work in that we let users use
standard TCP but allow them to choose the number of con-
current connections. Congestion collapse is studied in [10]
through a model of the interaction between network and user
behavior. In [7], the authors study the impact of concurrent
downloading on the fairness and system’s transient behavior.
In our game-theoretic study, we investigate the effect of the
number of connections on TCP performance. Regarding this
subject, there are also several related works, such as [13] and
[9]. There are many TCP modelling works. Among them, we
choose the known and the most accurate PFTK TCP model
[12] as the basis of our analysis.

The rest of the paper is organized as follows. System opti-
mization problem is addressed in Section 2. In Section 3, we
study game 1 in which users are only interested in maximiz-
ing their goodput. In Section 4, we introduce the packet send-
ing cost and social responsibility into user’s utility function.
Section 5 studies game 3 in which both cost and computation
power are considered. We present the simulation study with
NS in Section 6, and conclude the paper in Section 7.

2. System Optimization

In this section, we first define the TCP connection game,
with specific utility function definitions left for the following
sections. Then we address the system optimization problem,
which is applicable to all utility functions studied in this paper.

Formally, in the TCP connection game, there are m (m ≥
2) TCP users with different Round Trip Time (RTT) Ri com-
peting for the capacity C of a bottleneck link. Individual
users are treated as players. A strategy ni available to a user
i is a feasible number of connections he/she can open con-
currently. In practice, ni takes positive integer values. We
will first consider the case where ni is a real-valued num-
ber, then we discuss the case where ni is a positive integer
number. Let Si denote the feasible strategy set of player i,
then ni ∈ Si. And the feasible strategy space of this game is
S = S1 ×S2 · · · ×Sm. Then, a feasible strategy tuple is a m-
dimension vector n = (n1, n2, ..., nm) ∈ S. The objective of
each player is to maximize its utility Ui by adjusting ni. Var-
ious utility functions Ui are defined in the following sections
to capture different user behaviors. Nash Equilibrium nne or
n∗ = (n∗

1, ..., n
∗
m) 1 is defined as

n∗
i = argmaxni∈Si

Ui(n∗
1, n

∗
2, ..., ni, ..., n

∗
m), ∀i

In the TCP connection game, from a system point of view,
the aggregate goodput of all connections of all players always
equals the bottleneck link capacity. Thus, there is nothing to
be optimized regarding the aggregate goodput. However, we

1For notational convenience, we use both n∗ and nne interchangeably to
denote the number of connections at NE. Similarly we use both p∗ and pne

to denote the loss rate at NE.

note that there is a cost associated with this aggregate goodput.
For each user i, each connection will have a sending rate or
offered rate Bi. Then,

∑m
i=1 niBi, the aggregate of all these

offered rates, drives the bottleneck link to full utilization. The
larger

∑m
i=1 niBi is, the more network resource is utilized.

Thus, we can think of Bi as a “cost” from the system’s point
of view and

∑m
i=1 niBi as an aggregate cost Φ. Thus, to get

the highest efficiency, the system’s optimization objective is
to minimize this total cost while maintaining the bottleneck
link fully utilized.

In the following, we first introduce the known TCP send-
ing rate model and its related per-connection goodput model
in [12]. Throughout this paper, we will base our analysis on
these two models.

The best known TCP sending rate model, full PFTK TCP
model relating TCP sending rate Bi to loss rate p and RTT
Ri, is given in [12], but it is too complicated for analysis.
Therefore, we use a simplified version (recommended in the
TFRC standard proposal [4]) given as

Bi = 1/(µRi
√

p + T0,iν(p3/2 + 32p7/2)) (1)

where µ =
√

2b/3, ν = 3/2
√

3b/2, b = 1 or 2, and T0,i =
4Ri.

For per-connection goodput, we assume that the expected
window size W of each connection is the same for all flows
going through a congested bottleneck link [12], because we
expect all connections to incur the same loss rate p at the
bottleneck link queue. Let W̄ denote this common window
size. Then, the per-connection goodput of player i will be
Gi = W̄/Ri. Suppose that player i has ni connections.
Then, based on the bottleneck principle, the sum of goodputs
of all connections of all players equals the link capacity C,
i.e.,

∑m
i=1 niGi = C. Then, we have W̄ = C/(

∑m
i=1 ni/Ri)

and Gi = (C/Ri)/(
∑m

i=1 ni/Ri).
We have the following formulation of the system optimiza-

tion problem:

min
n

Φ =
∑m

i=1 niBi (2)

subject to

Bi = 1/(µRi
√

p + T0,iν(p3/2 + 32p7/2)) (3)

Bi(1 − p) = (C/Ri)/(
∑m

j=1 nj/Rj), ∀i (4)

ni ∈ [1, ..., nmax
i ]; m ≥ 2; n = {n1, ..., nm} (5)

Note, (4) indicates that per-connection goodput of a user is
the product of its per-connection sending rate and the proba-
bility of successful transfer. Regarding the optimal operating
point of the whole system, we have the following result.
Theorem 1 In the TCP connection game, the system optimal
cost is uniquely achieved at nopt = (1, 1, ..., 1).

Proof: First, we transform the objective function into a
simpler form: Φ = C/(1 − p). It is easy to see that we need
to find the minimal feasible p to minimize Φ.

Note that p is a function of n (see (4)). If we take
T0,i = 4Ri, as recommended in [4], and let φ̄(p) = µ

√
p +

4ν(p3/2 + 32p7/2), then (4) can be rewritten as F (p, n) =



(1 − p)(
∑m

j=1 nj/Rj) − Cφ̄ = 0. Solving for p given a spe-
cific n is actually equivalent to solving the above equation.
First note that,

lim
p→0

F =
m∑

j=1

nj/Rj > 0; lim
p→1

F = −C · φ̄(1) < 0

Furthermore, F (p, n) is a strictly monotonic decreasing func-
tion of p since ∂F/∂p = −∑m

j=1 nj/Rj − Cφ̄ < 0.
Thus, there must be a unique solution p in F (p, n) = 0 for

any given feasible n. That is, p as a function of n is implicitly
defined in F (p, n) = 0. Note that p is a increasing function
of n, thus, minimal popt (satisfying F (p, n) = 0) is uniquely
achieved at nopt = (1, 1, ..., 1). Then, we see that the system
cost expressed in (2) uniquely achieves minimum value at nopt

with Φopt = C/(1 − popt).

3. Game 1: Aggressive Users

In this section, we study the TCP connection game with
goodput as the utility function. Users with this utility function
are aggressive in the sense that they only care about goodput
and have no resource limitations and are not socially respon-
sible. We first identify the Nash Equilibria of this game, and
then study how badly the system’s performance is influenced
by this selfish user behavior.

3.1. Nash Equilibrium

We first recall the basic definition of the TCP connection
game in Section 2. The strategy set of player i is Si =
{1, 2, 3, 4, ..nmax

i }, where nmax
i is the maximum allowable

number of connections for user i. We allow each player to
maximize its aggregate goodput by adjusting its feasible num-
ber of connections ni. Specifically, the utility of player i is
represented as:

Ui = niGi = (Cni/Ri)/(
m∑

j=1

nj/Rj) (6)

We call this utility function 1 and the game with this utility
function Game 1. The following lemma shows that Game 1
has a unique Nash Equilibrium (NE) at a boundary point in
the strategy space.
Lemma 1 There exists a unique Nash Equilibrium (NE) of the
TCP connection game with utility function 1. At this NE, all
players use their maximum number of allowable connections,
that is, NE is (nmax

1 , nmax
2 , ..., nmax

m ).
Proof: Note that the strategy set of each player is a

discrete set. To make the analysis easier, we first relax the
strategy set of any player to be a real interval [1, nmax

i ]. This
relaxed version is a continuous kernel game [2].

For player i, consider the partial derivative

∂Ui/∂ni = ((C/Ri)
∑

j �=i

nj/Rj)/(
m∑

j=1

ni/Rj)2 (7)

Obviously, ∂Ui/∂ni > 0, thus, player i always has an in-
centive to increase its number of connections regardless of the

number of connections used by other players. Since this is true
for all players, the only NE is n∗ = (nmax

1 , nmax
2 , ..., nmax

m ).
Since the strategy set of the original discrete game is a subset
of the strategy set of this continuous kernel game, and this NE
is a feasible strategy in the original discrete game, we con-
clude that the original discrete game has a unique NE at n∗.

Remarks. There is no fairness at the NE. Since the utility
function is an increasing function of the number of connec-
tions opened by a user, user i with larger nmax

i /Ri will have
a larger goodput than user j with smaller nmax

j /Rj .

3.2. Price of Anarchy and Loss of Efficiency

Price of Anarchy [5], is defined as the ratio of system per-
formance at the worst NE and the system performance at the
system optimal point. This value quantifies the loss of effi-
ciency of the worst NE. Since there is a unique NE in Game
1, the price of anarchy is just the efficiency loss of this unique
NE.

Let pne denote the loss rate when the system is at NE. The
system cost at NE is:

Φne =
m∑

i=1

nmax
i Bi,ne = C/(1 − pne)

Then, the price of anarchy is given by:

Leff = Φne/Φopt = (1 − popt)/(1 − pne) (8)

If the number of users m is fixed, then Φopt is a constant
regardless of the values of nmax

i . But Φne is an increasing
function of nmax

i . The reason is as follows. Based on the
proof of Theorem 1, we know that p is an increasing function
of the number of connections and p asymptotically approaches
one as ni goes to ∞. Thus, when nmax

i → ∞, pne → 1. Then
(8) indicates that the price of anarchy becomes unbounded and
arbitrarily large.

It is interesting to note that the price of anarchy asymp-
totically approaches a constant when the population of users
increases. We assume that all users have the same RTT R̄, and
they have the same maximal allowable number of connections
n̄, then pne is the solution of (1 − pne)Bne = C/(mn̄), and
popt is the solution of (1 − popt)Bopt = C/m. The loss of
efficiency is Leff = (1 − popt)/(1 − pne) = n̄Bne/Bopt.

Since limm→∞ popt = 1 and limm→∞ pne = 1, then

lim
m→∞Bopt = 1/(µR̄ + 33T0ν) = lim

m→∞Bne

Thus, limm→∞ Leff = n̄. However we need to be cautious
when interpreting this result. In this case, m is so large that the
network cannot even support the case where each user opens
only one connection (popt → 1). Thus, the network cannot
operate efficiently even at the system optimal point.

4. Game 2: Resource Constrained and Socially
Responsible Users

The previous section shows that the price of anarchy can
be arbitrarily large if users are only interested in maximizing



their goodputs. In this section, we will show that if users have
some resource constraints and take some social responsibility
by considering the cost to the system in their utility functions,
then the price of anarchy is bounded.

Recall that we treat the aggregate sending rate from all con-
nections opened by a player as the effort or cost incurred by
that user. Let niBi denote this cost. Note, this cost not only
represents a cost to the system but also can be interpreted as
the cost to the user for sending data. Then a user i may want to
examine the tradeoff between the cost niBi and the achieved
goodputs when making a decision on how many connections
to open, thus we can derive a utility function as follows

Ui = C(ni/Ri)/(ni/Ri +
m∑

k=1,k �=i

nk/Rk) − βniBi (9)

We call this utility function 2 and the game with this utility
function Game 2. Here, coefficient β ∈ (0, 1) represents a
user’s weight on the effort or cost. A smaller β means a user
is less resource constrained and less socially responsible. If
β = 0, this utility function becomes just the goodput, utility
function 1.

In this section, first, we study a continuous kernel symmet-
ric multiple player TCP connection game in which all users
have the same Round Trip Time (RTT). We then consider two
extensions. One is a discrete version of the symmetric multiple
player TCP connection game. The other one is a continuous
kernel asymmetric multiple player TCP connection game in
which users have different RTTs.

4.1. Continuous Kernel Symmetric TCP Connection
Game

In this game, since all users have the same RTT, the per-
connection sending rate from all users are all the same. Thus,
an arbitrary player i has the utility function given by (9) with
B replacing Bi and all R terms being canceled out. Note that
B is given by (3) and (4). B is a function of p which is in
turn a function of ni, ∀i. The strategy set for player i is a
real interval Si = [1,∞). Since all players take a real-valued
number as a feasible strategy and the identity of a player is not
important, we call this game a continuous kernel symmetric
[2] TCP connection game with utility function 2.
Theorem 2 There is a unique Nash Equilibrium (NE) n∗ in
the continuous kernel symmetric TCP connection game with
utility function 2. At this NE, all players have the same num-
ber of connections. This NE is an interior point of the strat-
egy space for m < m0 and n∗ = (1, 1, ..., 1) for m ≥ m0.
Threshold m0 is the largest m satisfying m(1 − p∗)B∗ ≤ C
where p∗ and B∗ are respectively loss rate and per-connection
sending rate at the NE.

Proof: This proof consists of two parts. In the first part,
we prove that the unique NE is achieved at an interior point in
the strategy space when the number of players m is not very
large. In the second part, we present the results when m is
very large.
Part 1:

Player i tries to solve for its optimal strategy or best re-
sponse n∗

i , as a response to the strategies of all other players.
Thus, finding an interior point NE n∗ = (n∗

1, ..., n
∗
m) is equiv-

alent to searching for a point n∗ satisfying ∀i, ∂Ui/∂n∗
i = 0

and n∗
i = argmaxni∈Si

Ui(n∗
1, ..., ni, ..., n

∗
m).

In the following, we first introduce a fact indicating that,
for any player i, a stationary point satisfying ∂Ui/∂ni = 0 is
actually unique and is a maximum point if it is in [1,∞). Then
we show that there is a unique n∗ satisfying ∂Ui/∂n∗

i = 0, ∀i.
We need to seek all vectors n∗ satisfying a set of m equa-

tions
∂Ui/∂ni = 0, ∀i ∈ [1, 2, 3, ..., m] (10)

For an arbitrary player i, we have

∂Ui

∂ni
=

Cn−i

(ni + n−i)2
− β

φ
− βniCϕ

(ni + n−i)2[(p − 1)ϕ − φ]
(11)

where

φ=µR
√

p + T0ν(p3/2 + 32p7/2) = 1/B (12)

ϕ=
µR

2
√

p
+ T0ν(

3
2
√

p + 112p5/2) (13)

and n−i =
∑m

k=1,k �=i nk and ϕ = dφ/dp.
Fact 1: Best response of a player is unique and it is the
unique stationary point if this stationary point is in [1,∞).
First we need to show that for any given n−i, there is only one
unique maximal point for Ui. Player i needs to solve the fol-
lowing equations to get n∗

i , a candidate for a maximal point:

0=βni − n−i(1 − p − β)[ϕ(1 − p)/φ + 1] (14)

0=Cφ − (ni + n−i)(1 − p) (15)

where (14) is a simplification of ∂Ui/∂ni = 0. We can think
of n∗

i and p as implicit functions of n−i. Note that for any
given n−i, there is a unique pair of (n∗

i , p) as the solution to
(14) and (15). We can check that the unique stationary point
n∗

i obtained from this implicit function is indeed a maximal
point. We can enlarge the domain of Ui to be (0,∞), and no-
tice that n∗

i is also a unique stationary point for this enlarged
domain. Since Ui(0, n−i) = 0 and limni→∞ Ui = −∞, they
are not larger than Ui(n∗

i , n−i) given that n∗
i is indeed an in-

terior point. Then we can conclude n∗
i is indeed a maximal

point in domain (0,∞). If it is still a stationary interior point
in [1,∞), then it also must be a maximal point. Otherwise
if it is smaller than one, then the maximal point is one (the
boundary point), which is discussed in Part 2 of this proof.
We can show that n∗

i = fi(n−i) and p = fp(n−i) are contin-
uous functions2 on domain n−i ∈ (0,∞). In addition, from
implicit function theorem, we know that they are continuously
differentiable. See [14] for details.

Now, we prove the existence and uniqueness of NE.
Consider two arbitrary players i and j, and let δini =∑m

k=1,k �=i nk; δjnj =
∑m

k=1,k �=j nk. When ∂Ui/∂ni =

2fi(n−i) is referred to as the best response or reaction function.



∂Uj/∂nj = 0, we get

(1 − p)[δi + βϕ/((1 − p)ϕ + φ)]/(1 + δi) − β=0 (16)

(1 − p)[δj + βϕ/((1 − p)ϕ + φ)]/(1 + δj) − β=0 (17)

Let ∆ = βϕ/((1−p)ϕ+φ), then combining (16) and (17)
leads to

(δi/(1+ δi)− δj/(1+ δj))+�(1/(1+ δi)−1/(1+ δj)) = 0
(18)

For (18) to be true, we need either � = 1 or δi = δj .
We can show that ∆ = 1 cannot be true. We prove this by
contradiction. Assume that it is true, then we can substitute
it into (16), and get β = 1 − p. Substituting β = 1 − p into
∆ = 1, we get φ = 0. We know that φ = 0 is impossible
given that p ∈ (0, 1), thus ∆ 	= 1. Thus, the only possible
solution is δi = δj , ∀i, j. This implies that n∗

i = n∗
j at NE n∗

if it exists.
In the following, we will prove that, when n∗

i = n∗
j , there

exists a unique solution p∗ for (10). Then we can conclude
that there is a unique n∗.

Since at NE all players have the same number of connec-
tions, from (11), we obtain

(m − 1)/β − m/(1 − p) + ϕ/((1 − p)ϕ + φ) = 0 (19)

Let F (p) denote the LHS of (19). Ideally, solving equation
(19) with p as unknown, we can get loss rate at NE p∗. Then,
substituting p∗ back into (4), we can get n∗ as the number of
connections of all users at NE. However, (19) contains several
powers of p such as 7/2 and 5/2, so it is impossible to get an
algebraic solution of p. Thus, in the following, we examine
several properties of F (p), and based on these properties we
make inferences about the behavior of NE. To get exact val-
ues of p∗ and n∗ for a given network setting, we can rely on
Matlab for numerical solutions.

First, we will prove that (19) has only one solution for p
in (0, 1). We note that F (p) is a continuous function, and
the domain of F (p) is p ∈ (0, 1), and limp→0 F (p) > 0 and
limp→1 F (p) < 0. We claim that F (p) is a strictly monotonic
decreasing function. If this claim is true, then there must be a
single solution p∗ for F (p) = 0. In the following, we prove
this claim.

Consider the derivative

dF

dp
=

−m

(1 − p)2
+

ϕ′φ
[(1 − p)ϕ + φ]2

<
−1

(1 − p)2
+

ϕ′φ
[(1 − p)ϕ + φ]2

=
−φ2 − 2(1 − p)ϕφ − (1 − p)2(ϕ2 − ϕ′φ)

(1 − p)2[(1 − p)ϕ + φ]2
(20)

Thus, to prove that dF
dp < 0, we only need to prove that ϕ2 >

ϕ′φ. This can be easily proved. See [14] for details.
If we substitute p∗ into (4), together with the result that all

users have the same number of connections at n∗, we conclude
that there is only one NE n∗ for this game and it is symmetric.

That is, n∗
i = argmaxni∈Si

Ui(n∗
1, ..., ni, ..., n

∗
m) and n∗

i =
n∗, ∀i. Note, m must be no larger than m0 (given in the next
part) in order for this interior-point NE to exist.
Part 2:

Now, we will show that if m ≥ m0 where m0 is the largest
m such that m(1−p∗)B∗ ≤ C, the NE is no longer an interior
point of the strategy space. Instead, it is n = (1, 1, ..., 1).

Recall (19), and let

F (p, m) = m(1/β − 1/(1 − p)) − 1/β + ϕ/((1 − p)ϕ + φ)
(21)

Given a value of m, we can plot a curve for F (p, m) with
p as x-axis and F (p, m) as y-axis. Note that all these curves
(with different m values) all meet at a single common point
(p0, F (p0, m)) with p0 = 1 − β. Take any mi and mj and
check that F (p, mi) = F (p, mj) implies p = 1 − β.

Recall that F (p, m) is a monotonic decreasing function of
p, and F (p∗, m) = 0. Since F (p0, m) < 0, so p∗ must be
smaller than p0. When p < p0, we get

dF/dm = 1/β − 1/(1 − p) = 1/(1 − p0) − 1/(1 − p) > 0

Thus, as m increases, F (p, m) is strictly monotonic in-
creasing, and since F (p, m) is a monotonic decreasing func-
tion of p, thus, we see that as m increases, for any given F (p),
p will be strictly increasing towards p0. Then, it must be true
that for F (p∗) = 0, as m increases, p approaches p0.

Recall that at NE, we must have (1− p∗)/φ∗ = C/(mn∗).
Since all users must have at least one connection, i.e., n∗ ≥ 1,
we have to make sure that m(1 − p∗)/φ∗ ≤ C. We know that
as m increases, p∗ → p0 = 1 − β. Then φ∗ as a function of
p∗ also increases to φ0 (function of p0). Thus, (1 − p∗)/φ∗

is bounded below by (1 − p0)/φ0. So, as m becomes larger
and larger, eventually, m(1 − p∗)/φ∗ will be larger than C.
Then the NE is no longer an interior point. Let m0 denote this
threshold, and it is the largest m satisfying

m(1 − p∗)/φ∗ ≤ C (22)

Since it is difficult to obtain an explicit expression of p as a
function of m, we rely on numerical method to identify m0.

Remarks: Note that the utility function of this TCP connec-
tion game is not concave in general. But we can still get an
alternative but non-constructive proof of the existence of NE
by modifying the proof of a general result (Theorem 4.3 in
[2]). We can replace the strict convexity of cost function in
that proof with the uniqueness of best response in the TCP
connection game, then the existence of NE is obtained.
An illustrative example: NE as an interior point. We
present an example to illustrate an interior-point NE in a con-
tinuous kernel TCP connection game with utility function 2.
There are two players competing for a bottleneck link with
capacity C = 10Mbps or 1250pkts/sec. They have the same
RTT (240ms), and choose β = 0.7. To identify NE, we can
plot the best response curves of these two players. For ex-
ample, suppose we want to know the best response curve of



player 2. Given a specific number of connections n1 of player
1, player 2 uses the simplified PFTK TCP model to maximize
its utility defined in (9). We use optimization toolbox in Mat-
lab to solve this optimization problem to get f2(n1) as the best
response to n1 and plot the best response curve f2(n1). Simi-
larly we can plot the best response curve f1(n2) for player 1.
The intersecting point of these two curves is the NE. Figure
1 shows the simulation result, and we see that there is indeed
one unique NE. And, it can be easily verified that this NE is
the same as that predicted in Theorem 2.
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An illustrative example: effects of population size. We use
the same network settings as before. We take β = 0.3, and
vary the number of players m from 100 to 1000. We plot all
curves of F (p, m) (defined in (21)) as a function of p in Fig-
ure 2. All these curves intersect at p = 0.7 as predicted by
Theorem 2. And they intersect with F (p, m) = 0 at p∗s. This
plot shows that p∗ approaches p0 = 1 − β as m increases. In
Figure 3, for several different β values, we plot the loss rate p∗

at NE when the number of users m increases. As shown in this
figure, for any given β, p∗ approaches 1 − β when m is not
very large. However, when m is very large, Figure 4 shows
that p grows more quickly, but still less than log m. In sum-
mary, this example has verified the NE’s behavior predicted in
part 2 of the proof of Theorem 2.
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4.2. Loss of Efficiency

As in Section 2, we define the system optimization problem
as minimizing the cost to maintain a busy bottleneck link. The
loss of efficiency is defined as the ratio between the cost of the
system at Nash Equilibrium and the system optimal cost. As

before, the optimal system cost is Φopt = C/(1−popt). Then,
we can get the loss of efficiency of NE for this game.
Corollary 1 In the continuous kernel symmetric TCP connec-
tion game, the loss of efficiency is Leff = (1−popt)/(1−pne),
and it is always larger than or equal to one, but it is bounded.

Proof: Consider the system cost at NE:

Φne = Bne(
m∑

i=1

n∗
i ) = C/(1 − p∗) = C/(1 − pne)

Then the loss of efficiency is given as

Leff = Φne/Φopt = (1 − popt)/(1 − pne) (23)

We note that the loss of efficiency is always larger than or
equal to one. Recall that popt must satisfy (1 − p)m/φ = C,
and p∗ or pne must satisfy (1 − p∗)mn∗/φ∗ = C. Then we
have

(1 − p)/φ = n∗(1 − p∗)/φ∗

Since n∗ ≥ 1, then p∗ ≥ popt. As m increases, n∗ decreases.
Before n∗ reaches one, p∗ is strictly larger than popt, and af-
ter that, p∗ = popt. Then, it must be true that the maximal
efficiency loss occurs when m is small.

Recall that 1 − p∗ > β and popt is an increasing function
of m, thus, we have

Leff = (1 − popt)/(1 − p∗) < (1 − popt,m=2)/β (24)

This upper bound is a simple function of network parameters
and user’s aggressiveness coefficient β.

An illustrative example. We take the network settings in the
previous examples, and choose β = 0.7. In Figure 5, we
plot the loss rate of the NE and the system optimal point. As
predicted, the loss rate of the NE is always greater than or
equal to the loss rate of the system optimal point. When m is
sufficiently large, all users just use one connection. Then the
trajectory of loss rate increase of the NE is the same as that of
the system optimal point.
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In Figure 6, for several different values of β, we plot the
loss of efficiency of NE as a function of m. The solid lines
are the actual losses of efficiency, and the dashed lines are the
upper bounds computed from (24). As expected, the loss of
efficiency is always upper bounded.



Effects of user’s aggressiveness. β represents a user’s prefer-
ence of how much effort he/she is willing to expend to get the
desired goodput share of the bottleneck capacity. Intuitively,
as β gets larger, a user is likely to use less effort, then the
number of connections at NE will be smaller, and the loss rate
of NE will be smaller.

This can be verified by looking at the relationship between
loss rate of NE and β. Recall that p∗ is the solution to the
following equation F = (m − 1)/β − m/(1 − p) + ϕ/((1 −
p)ϕ + φ) = 0. Then

∂p/∂β = −F ′
β/F ′

p =
(m − 1)/β2

− m
(1−p)2 + ϕ′φ

((1−p)ϕ+φ)2

< 0

This indicates that p is a decreasing function of β. Since n∗ is
a increasing function of p, we know that if β increases, at the
NE, users open fewer and fewer connections.

We can expect the system cost (the aggregate costs of all
users) to decrease as β increases. Recall that the system cost
at the NE is f =

∑m
i=1 n∗

i B
∗ = C/(1 − p∗). As p∗ is a de-

creasing function of β, we see that as β becomes larger and
larger (users becomes less and less aggressive), the required
system effort will be smaller and smaller. In addition, since
popt is independent of β, from the above discussion on p∗, we
see that Leff is a decreasing function of β. This is under-
standable, as users become less and less aggressive (larger β),
the NE will be more and more efficient.

As an example, we use the same network settings as before,
and fix the number of users to be 100, but vary β from 0.05
to 0.99. We expect that the loss rate at the NE to decrease as
β increases, and finally reach the loss rate of the system opti-
mal point. This means that β is so large that NE is no longer
an interior point of the strategy space and that all users are
so conservative that everyone just opens one connection, as
shown in Figure 7. On the other hand, as users becomes more
and more aggressive (β decreases), at the NE, users open more
and more connections. This means that the whole system will
need more and more effort to keep the same aggregate good-
put. Figure 8 shows that the loss of efficiency decreases as
users become less and less aggressive, which is expected.

It would also be interesting to understand the situation
where different users have different βs. This will be a topic of
our future research.
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4.3. Stability of Nash Equilibrium

A natural question is whether the unique NE of this game
is stable. As defined in [2, 6], if some player deviates from NE
by an arbitrary amount in the feasible strategy set, and other
players observe this and they adjust their responses optimally
based on some fixed ordering of moves, and if this adjustment
process converges to the original NE, then we say that this
NE is globally stable with respect to this adjustment scheme.
Correspondingly we can define local stability by restricting
the stability domain to be some ε-neighborhood of NE. As
pointed out in [2], stability condition is the same regardless
of the adjustment schemes when there are only two players.
Here, we only study the stability of a two-player TCP connec-
tion game, and this adjustment scheme is also called best reply
dynamics. The response or reaction function of each player is
determined by solving its optimization problem. Recall (14)
and (15), from which we obtain n1(t + 1) = f1(n2(t)) and
n2(t + 1) = f2(n1(t)) where t indicates discrete time step.

Some sufficient conditions (needed for contraction map-
ping) for the global stability of NE is given in [6], but they are
not satisfied in this game. Checking the best response curves
in Figure 1 shows that contraction mapping is not true when
the game is in state (1, 1), namely both players using only one
connection. Nevertheless, we are able to show that the unique
NE is locally stable.
Theorem 3 In the two-player symmetric continuous kernel
TCP connection game with utility function 2, the unique NE is
locally stable.

The basic idea of the proof of this theorem is as follows.
Since we can derive the exact form of the first derivative of the
best response function and this derivative is continuous, we
can check that the absolute value of this derivative is strictly
smaller than one at the NE. Then we are able to show that
locally at NE, there exists a contraction mapping driving the
system to the NE if the deviation from the NE is sufficiently
small, based on the Banach contraction mapping theorem [8]
and the mean value theorem. The detailed proof is in [14].

As for the global stability, we simulated a large range of
network parameters, and found that f1(n2) and f2(n1) were
always concave functions. Since the concavity of the best re-
sponse function and the uniqueness of NE imply global stabil-
ity (proved in [14]), we conjecture that the NE is very likely
to be globally stable.

4.4. Extension 1: Integer TCP Connection Game

In this section, we consider a more practical TCP connec-
tion game in which each player can only choose a positive
integer number of connections. That is, each player’s strategy
set is �. We call this the Integer TCP Connection Game.

To study this game, we use the results of the corresponding
continuous kernel game. Note that if the pure strategy NE in
the continuous game is an integer vector, then it must be a NE
of the corresponding integer game. The more interesting case
is where the pure strategy NE of the continuous game is a non-
integer vector n∗ = (n∗, n∗, ..., n∗). When this happens, we
can approximate n∗ by taking floor n∗

f and ceiling n∗
c of n∗ to



get 2m integer-valued vectors.
In the following, first, we will show that, at these integer-

valued vectors, the utility deviation of each player from the
non-integer NE is bounded. As the number of users increases,
this bound approaches zero. For convenience, we call such a
vector an approximate Nash Equilibrium3. Next, we demon-
strate that this integer game must have pure strategy NE(s)
at some of these integer vectors given that some pathological
cases never occur.

We start with a simple example of a two-player game. Fig-
ure 9 shows that in the continuous version of the game, the
intersecting point of the best response curves of two players
is a fraction number (661.5, 661.5). If we restrict the strat-
egy space of each player to be �, we can approximate the
continuous game NE with the floors and ceilings of the NE
vector to get four vectors: (661, 661), (661, 662), (662, 661)
and (662, 662).
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How much performance loss will be incurred due to this in-
teger constraint on strategy space? Recall that for an arbitrary
user i, its utility at the NE is given as U∗

i = Cn∗/(mn∗) −
βn∗B∗ = C/m − βn∗/φ∗. Among all such integer ap-
proximate NEs, the worst case goodput loss could happen
when user i opens (n∗ − 1) connections while all others
open (n∗ + 1) connections. Let Gl denote this goodput
lower bound, then Gl = C(n∗ − 1)/(mn∗ + m − 2). On
the other hand, the worst case cost increase could happen
when user i opens (n∗ + 1) connections while all others open
(n∗ − 1) connections. Then, the cost increase upper bound is
Ju = β(n∗ + 1)/φu, where φu is the solution of

(1 − pu)/φu = C/(mn∗ − m + 2)

Then, the upper bound of utility loss is given as

∆U=G∗ − Gl − β(J∗ − Ju)

=C(
1
m

− 1 − 2/(n∗ + 1)
m − 2/(n∗ + 1)

) + β[n∗(
1
φu

− 1
φ∗ ) +

1
φu

]

Thus the utility loss of any user at any approximate integer
NE is bounded by ∆U , and this bound approaches zero as m
increases. The loss in system performance at any approximate
NE also approaches zero.

3Note, these approximate integer Nash Equilibria are different from ε-
Nash Equilibrium defined in [2].

Now the next question is whether these approximate NEs
are possibly NEs in the integer game? For this question, we
have the following result.
Theorem 4 In the integer symmetric TCP connection game
with utility function 2, if the Nash Equilibrium of the cor-
responding continuous game is a non-integer vector n∗ =
(n∗, ..., n∗) with n∗

f and n∗
c denoting the floor and ceiling of

n∗, then there must exist pure-strategy integer Nash Equilib-
rium provided that the following condition is satisfied: the
best response for player i, ∀i is always chosen from n∗

f and
n∗

c given that all other players choose either n∗
f and n∗

c .
A detailed proof of this theorem is in [14]. To illustrate

this theorem, we recall Figure 9 and observe that when player
2 chooses 662 as its strategy, the best integer response of
player 1 must be either 661 or 662, since for each strategy
of player 2, player 1 has a unique best response and all other
strategies monotonically decrease in utility as they get away
from the best response (recall that there is only one unique
interior-point maximum for utility function 2). Similarly we
have the following arguments: when player 2 chooses 661,
the best integer response of player 1 must be either 661 or
662; when player 1 chooses 661 or 662, the best integer re-
sponse of player 2 must be chosen from 661 and 662. This
observation is exactly the condition required for Theorem 4.

There is some pathological case in which there could be
no pure strategy NE. Figure 10 shows such an example. If
we assume that the integer closest to the response curve is
the integer with the highest uility, then, we can see that the
game shown in this figure has no pure strategy integer NE
even though there is a fractional NE in the continuous game.
Actually, we never saw this case in our simulations.

Since the condition required for Theorem 4 is satisfied in
all of our simulations, we conjecture that pure strategy integer
NE always exists for the integer TCP connection game. This
will be a topic of our future research.

4.5. Extension 2: Asymmetric TCP Connection Game

The asymmetric game differs from the previous symmetric
game in that users have different Round Trip Time (RTT). For
player i, we have the following utility function

Ui=(Cni/Ri)(ni/Ri +
m∑

k=1,k �=i

nk/Rk) − βniBi (25)

where Bi is given in (3) and (4).
Theorem 5 There is a unique Nash Equilibrium (NE) in the
continuous kernel asymmetric TCP connection game. This
NE is an interior point of the strategy space given that the
number of users is not larger than m0 given in (26). At
this interior-point NE, for any two players i and j, we have
n∗

i /n∗
j = Ri/Rj .

Since the proof is very similar to that of Theorem 2,
we only sketch the basic idea as follows. First we need
to set φ̄ = µ

√
p + 4ν(p3/2 + 32p7/2), φi = Riφ̄ and

ϕi = Riϕ̄. Then following a similar procedure, we can
derive ∂Ui/∂ni and ∂Uj/∂nj for any two players. We let



δini/Ri =
∑

k �=i nk/Rk; δjnj/Rj =
∑

k �=j nk/Rk. Then
we can show that δi = δj , thus, n∗

i /n∗
j = Ri/Rj .

If we sort the number of connections in an ascending order
as n∗

1, n
∗
2, ..., n

∗
m, then as we increase the number of users,

all n∗
i s will simultaneously decrease but maintain their rela-

tive proportional relationship. As m reaches a large enough
number where n∗

1 must be less than 1, then player 1 will just
maintain one connection. From then on, as m continues in-
creasing, NE will no longer be an interior point. To maintain
an interior-point NE, m must be smaller than m0, where m0

is the largest m satisfying

m(1 − p∗)/(R1φ̄
∗) ≤ C (26)

It is easy to see that at this interior-point NE, users have the
same utility, and the efficiency loss of the NE is bounded.

5. Game 3

Recall that cost βniBi considered in Section 4 contains
the cost to the whole system and the cost to a user at packet
level. In this section, we introduce another term specific only
to users and that accounts for the cost of maintaining open
connections. Specifically, we use αni to represent the com-
putation cost, and call α the computation power coefficient.
Intuitively, the more connections a user opens, the more com-
putation power he/she needs. αni can be thought of as the
resource requirement on CPU power, memory, etc. Thus, we
can consider a more comprehensive utility function including
both packet sending cost and computation resource limitation.
We refer to this as utility function 3, given as:

Ui = (Cni)/(ni +
m∑

k=1,k �=i

nk)(1 − β/(1 − p)) − αni (27)

We refer to the game with this utility function as Game 3.
Theorem 6 There is a unique Nash Equilibrium (NE) n∗

α in
the continuous kernel symmetric TCP connection game with
utility function 3. At this NE, all players have the same num-
ber of connections. This NE is an interior point of the strategy
space for m < m0,α and n∗

α = (1, 1, ..., 1) for m ≥ m0,α,
where m0,α is the largest m such that m(1 − p∗α)/φ∗

α ≤ C,
and p∗α is the loss rate at the NE.

Following a similar procedure in the proof of Theorem 2,
we can prove that there is a unique NE n∗

α = (n∗
α, n∗

α, ..., n∗
α).

See [14] for details. Since at the NE, we must have (1 −
p∗α)/φ∗

α = C/(mn∗
α), and since all users must have at least

one connection, i.e., n∗
α ≥ 1, we have to make sure that m ≤

m0,α where m0,α is the largest m such that m(1− p∗α)/φ∗
α ≤

C. We rely on numerical method to identify m0,α. Similar to
Theorem 2, we have p∗α < p0,α where p0,α is the solution of
1 − p0,α = αφ0,α + β. Thus, 1 − p∗α > β. And we know
that as m increases, p∗ → p0,α. Then φ∗

α as a function of p∗α
also increases to φ0,α (function of p0,α). Thus, (1−p∗α)/φ∗

α is
bounded. So, when m becomes larger and larger, eventually,
m(1 − p∗α)/φ∗

α will be larger than C, which means that all
users only use one connection at the NE.

Comparison between Game 2 and Game 3.
Since α represents a user’s computation power limitation,

introducing α will make users more conservative. Thus, we
might expect that at the NE of Game 3, users will open fewer
number of connections than at the NE of Game 2. And, as the
number of users increases, users will be more quickly to tend
to open just one connection in Game 3 than in Game 2. This
intuition is formalized in the following lemma.
Lemma 2 The interior-point Nash Equilibrium (NE) of Game
3 will give a lower loss rate and smaller number of connec-
tions than the NE of Game 2. And, as the number of users
increases, the interior-point NE of Game 3 will more quickly
become the boundary NE (1, 1, .., 1).

See [14] for a detailed proof.
Loss of Efficiency.

As before, the loss of efficiency of Game 3 is Leff =
(1 − popt)/(1 − pne,α). Similar to Game 2, the loss of ef-
ficiency is always larger than or equal to 1, but it is upper-
bounded. Recall that 1 − p∗α > β. And since popt is an in-
creasing function of m, we have

Leff = (1 − popt)/(1 − p∗α) < (1 − popt,m=2)/β

Even though this upper bound is the same as that of Game 2,
we see that the actual efficiency loss of this game is smaller
than that of Game 2 since p∗α < p∗.

The findings in this section again indicate that we might not
expect large efficiency loss or congestion collapse in reality.
Users with different computation power.

We might as well be interested in the case where users have
different computation power. Then, we can represent a user’s
utility function as: Ui = niC/(ni +

∑m
k=1,k �=i nk) − αini

where αi 	= αj , ∀i 	= j. For this game, we have the following
result. A detailed proof is given in [14].
Theorem 7 In the continuous kernel multiple player TCP
connection game with users having different computation
power, when m < m0, there exists an interior-point NE,
where m0 is the largest m such that Cφ∗(

�
αk−(m−1)α1)

(1−p∗)
�

αk
≥ 1.

At this NE, a more powerful user will have more connections
and higher goodput and utility.

6. NS Simulations

We use NS simulations in this section to verify the analyt-
ical results derived in previous sections. We consider a single
bottleneck link with capacity 10Mbps or 1250pkt/sec, com-
peted by users who are allowed to open multiple concurrent
connections. Due to space limitation, we only present here an
example simulation result on utility function 2.

First, we show to what extent the simplified PFTK model
captures the TCP behavior observed in NS simulations. Fig-
ure 11 and Figure 12 show respectively the comparison of loss
rate and goodput among those measured in NS simulation,
estimated by simplified PFTK model [12], and estimated by
Square-Root-P model [11]. In Figure 11, to compute the esti-
mated loss rate p of the simplified PFTK TCP model, we nu-
merically solve for p by using the measured TCP sending rate



B in NS simulations. Similarly, we use B to solve for p for
Square-Root-P model. Figure 11 shows that Square-Root-P
model is completely useless when the number of connections
gets large. The simplified PFTK TCP model gives a good esti-
mate of loss rate. In addition, Figure 12 shows that the simpli-
fied PFTK TCP model gives a very good estimate of measured
per-connection goodput.
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Figure 11. Loss rate.
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Figure 12. Goodput.
Figure 13 illustrates the existence of a unique Nash Equi-

librium observed in NS simulation of a two-player symmetric
TCP connection game. Both users have the same two-way
propagation delay 40ms. The bottleneck link queue is a RED
queue with a target queuing delay 10ms. Each user uses util-
ity function 2 with aggressive coefficient β = 0.8. Figure 14
shows that the predicted NE by our analysis is very close to
the one observed in NS simulations in Figure 13.
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Figure 13. Nash Equilibrium

observed in NS simulation.
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Figure 14. Nash Equilibrium

computed by PFTK model.

7. Conclusions

In this paper, we studied a particular selfish behavior of
TCP users in which users are allowed to open multiple con-
current connections to maximize their individual goodputs or
other utilities. Since such a strategic usage of TCP is easy to
realize through some software agents (e.g.,FlashGet [3]) and
its potential impact could be harmful [7], it is important to un-
derstand its implication on the stability of the Internet. To this
end, we modelled users as players in a non-cooperative non-
zero-sum game competing for the capacity of a single bottle-
neck link, referred to as the TCP Connection Game. We used
different utility functions to model different user behaviors,
and used the well known PFTK TCP model [12] as the basis
of our analysis.

We demonstrated analytically that there was always a
unique Nash Equilibrium (NE) in all variants of TCP connec-
tion games we studied. Our results indicate that, at the NE, the
loss of efficiency or price of anarchy can be arbitrarily large if

users have no resource limitations and are not socially respon-
sible. However, if either of these two factors is considered,
the efficiency loss is bounded. And in game 2, the game cap-
turing the user’s cost and social responsibility, we have also
shown that the unique NE is always locally stable and is glob-
ally stable if the game satisfying certain conditions which are
actually observed in all our simulations. And the integer NEs
always exist when users are restricted to use only an integer
number of connections and if some pathological case never
occurs. In summary, the general message is that this selfish
usage of TCP might not lead to the congestion collapse.
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