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Abstract

Access links are typically the bottleneck between a high
bandwidth LAN and a high bandwidth IP network. With-
out a priori resource provisioning or reservation, this tends
to have a serious effect on premium traffic from delay- and
jitter-sensitive applications. This paper develops a new
reservation-less mechanism for delay and jitter guarantees
across “single FIFO queue” access links by controlling in-
terfering non-premium traffic. The mechanism, called CON-
NET (CONtrolled NETwork), uses feedback regulation to
create self-controlled network services capable of tracking
delay and jitter references. We use a control-theoretic ap-
proach in designing the feedback loop based on a “black-
box” model of the access link in both cases of single and
multiple nodes. For robust control, we employ optimal Lin-
ear Quadratic Gaussian (LQG) regulator. We evaluate the
performance of CONNET using a real testbed implemen-
tation showing its superiority to other rate-based schemes
(such as CBQ and WFQ) in terms of simplicity, deployabil-
ity, and accuracy.

1. Introduction

The Internet has become the main communication vehi-
cle for many of our daily-life applications, such as online
shopping, banking and gaming, Voice over IP (VoIP) (e.g.,
IP telephony), and high definition TV (HDTV). These ap-
plications impose throughput, delay, and jitter requirements
on the Internet links and routers carrying their traffic. Pro-
viding predictable, as well as controllable, delay and jitter
at all times is still a great challenge even with the significant
increase in network bandwidth. With the existence of large
amounts of competing traffic at bottleneck segments of the
network, and in the absence of smart bandwidth manage-
ment, applications have only limited control over the net-
work performance.

Currently, customer networks employ high-bandwidth
technologies ranging from 10/100 Mbps Ethernets to opti-

cal links, such as OC3 (155 Mbps) and OC12 (622 Mbps), to
even Gigabit Ethernets. On the other hand, Internet Service
Provider (ISP) networks, or more generally IP backbones,
are usually equipped with even higher capacity using OC48
(2.4 Gbps), OC192 (10 Gbps) or 1 Tbps WDM fibers [12].
Access links (e.g., cable, xDSL, T1) between customer net-
works and their ISPs still have bandwidths of at most a few
megabits per second. This creates a bottleneck between the
two high-bandwidth networks, and hence, makes a strong
negative impact on the performance of delay-sensitive ap-
plications at medium- and high-utilization levels of access
links [17–19]. Moreover, with the current Internet’s first-in-
first-out (FIFO) access links/routers there is not much to do
in order to protect time-sensitive traffic from being delayed
and jittered at these bottlenecks. Large background HTTP
downloads can cause an annoying delay to an interactive or
a real-time streaming application running through the same
network.
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Figure 1. Delay and jitter across a network ac-
cess link

This paper presents a novel way, called CONNET (CON-
trolled NETwork), of providing controllable access links for
delay- and jitter-sensitive premium traffic. It is based on
a simple, yet intelligent bandwidth control for traffic go-
ing through the access links. Consider a network pipe—
representing a single or multiple hops—shown in Figure 1,
as an example access link, which carries two classes (i.e.,



premium and non-premium) of traffic. Assuming static link
capacity and FIFO queueing (used in the current Internet),
the delay and jitter, as well as the throughput, of premium
traffic will depend directly on the amount of non-premium
traffic sharing the network pipe with it. This is because,
for single FIFO-queue networks, non-premium packets in
front of premium packets cause them to experience vari-
able queueing and service delays. We first characterize
(with a model) the relationship between the amount of non-
premium traffic and the delay and jitter of premium traf-
fic. We then use this model to control the competing non-
premium traffic in order to achieve the required premium
delay and/or jitter guarantees. We take a control-theoretic—
specifically model-based control—approach to the access
link control problem, and present a full design and analy-
sis of robust estimation and control.

Our contributions are two-fold: (i) development of a
reservation-less approach for delay and jitter control that
does not require prior knowledge of input traffic specifica-
tion, and works well with currently-prevalent FIFO routers,
and (ii) creating dynamic as well as self-controlled access
links that react to changing traffic loads while maintain-
ing high link utilization. We evaluate this scheme using
an implementation on a real testbed network, demonstrating
the correctness, accuracy, robustness, and fault-tolerance of
the thus-designed controller. Its performance is compared
against other well-known schemes, such as classed-based
queueing (CBQ) [6] and weighted-fair queueing (WFQ) [4].
Based on this evaluation, we found CONNET making a sig-
nificant (more than 40% in some cases) improvement in pre-
serving low delay and jitter for premium traffic.

The rest of the paper is organized as follows. Section 2
presents the rationale, and introduces the main theme, of
CONNET. Section 3 describes how to derive a model for
the access link under study while Section 4 applies this
model to the design of feedback control for delay and jit-
ter guarantees. We describe the implementation of the con-
trol algorithm and the control components in Section 5.
Section 6 presents our experimental evaluation, confirming
the correctness and effectiveness of CONNET and compar-
ing its performance against other well-known rate-control
schemes. It also states the assumptions and current limita-
tions of the current version of CONNET. Related work is
discussed in Section 7, and the paper concludes with Sec-
tion 8, providing insights into the results obtained as well as
future directions.

2. Rationale and Main Theme

To develop a feel for the need of access link control,
or CONNET, we consider our campus network, shown
in Figure 2. From the EECS Department, we used
traceroute to www.google.com, and found it tak-
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Figure 2. The University of Michigan campus
network topology

ing 5 hops to reach mich.net, the regional ISP for the
University of Michigan, at access router AA1 (ge-1-1-
0x984.aa1.mich.ne). Specifically, we obtained the
following result:

> 1 eecs2n-gw 0.488 ms
> 2 141.213.127.37 0.608 ms
> 3 caen-bin.r-bin-seb.umnet.umich.edu 0.711 ms
> 4 bin-arb.r-bin-arb.umnet.umich.edu 0.842 ms
> 5 ge-1-1-0x984.aa1.mich.net 0.922 ms
> 6 ge-1-2-0x25.nl-chi3.mich.net 7.138 ms
> 7 198.110.131.78 7.717 ms

Within each segment LAN environment, there is enough
bandwidth, e.g., the link speed of CAEN (Computer-Aided
Engineering Network) varies between OC12 and OC48,
hence a small delay. However, the delay increases signifi-
cantly (� 7 ms) at the 6-th hop between access router AA1
and the next hop in mich.net. This indicates that the ac-
cess link (equivalently, the access router) contributes a sig-
nificant percentage of the end-to-end delay and must, there-
fore, be controlled in order to achieve overall predictable
delay and jitter performances. In what follows, we detail
the two salient features of CONNET.

2.1. Reservation-less Delay and Jitter Control

CONNET requires neither advance resource reserva-
tion nor a priori traffic parameterization. Furthermore, it
does not assume any special queueing discipline other than
single-FIFO-queue routers, unlike the common scheduling
algorithms that serve multiple queues for different traffic
classes with the disadvantage of configuration complexity.

For a typical FIFO network path with two types of input
traffic, premium and non-premium traffic, sharing the same
FIFO queue as shown in Figure 1, when we vary the rate of
non-premium traffic while keeping all other configurations
fixed, and plot both the measured premium delay (�) and
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Figure 3. Control criterion

jitter (�) along with the rate of non-premium traffic (�), we
get a relationship similar to the one in Figure 3(a), which
is the basis for our reservation-less control as well as the
“physics” of the system under study. We call it the “char-
acteristic curve,” which determines the feasible delay and
jitter under the current configuration and with the available
range of non-premium traffic rate. We control the rate (�)
of non-premium traffic sharing the network resources with
premium traffic in order to achieve the required delay and
jitter for premium traffic. Note that � is not the only fac-
tor affecting the premium traffic delay and jitter. However,
our previous study in [5] has shown that it has the greatest
effect, and hence, suffices to be the control input.

2.2. Dynamic and Self-Controlled Links

CONNET employs feedback control that yields faster re-
sponse to traffic changes. This creates self-controlled net-
work paths that do not require the operator’s intervention
to tune their performance each time the network workload
changes. The network operator only needs to set references
for the output, and then, the feedback controller will be able
to track these values. This tracking also works with variable
references, meaning that the operator can provide a refer-
ence signal reflecting the scenario of operation during a cer-
tain time interval (time-of-day or day-of-week). This would
not be easy to achieve with operator-controlled links or other
commonly-used techniques.

2.3. A Control-Theoretic Approach to Access Link
Control

The resemblance of this network control problem to fluid
mechanic problems motivated us to investigate the use of
a control-theoretic approach to designing the control algo-
rithm for the delay and jitter across the access link. Follow-
ing this approach, we first obtain a model for the relationship
between the amount of non-premium traffic, in terms of av-
erage bit rate, and the premium delay and jitter, and then use
state-space methods in the controller design. State-space is
recommended for digital control as in our network prob-
lem, and also for multiple-input-multiple-output (MIMO)
systems [7]. We use a Linear Quadratic Regulator (LQR)
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Figure 4. Network setup

controller along with the Kalman filtering as a combination
of robust estimation and control [7]. Figure 3(b) illustrates
the idea of control around the network pipe. We will study
single- and multiple-node network pipes using the same ap-
proach, showing its generality.

3. System Modeling and Validation

We are mainly interested in a “black-box” model that de-
scribes the system behavior in terms of its inputs and outputs
only, and this process is called system identification. Since
we use the state-space method for the design and analysis of
the network-control algorithm, we need a state-space model
for the system under study. We use a state-space system
identification method called the subspace modeling [14],
which extracts a system model from traces of its inputs and
outputs. A discrete-time “state innovation” model

���� � ��� ���� ����
���� ���

� � ��� ���� � ��
� � ������� � cov����

(1)

is the output of the subspace modeling, where the input is
�� � ��, or the non-premium traffic bit rate, and the output
is the premium delay and jitter, �� � ���� ���

� . The state
vector, ��, consists of variables that describe the internal
condition of the network subsystem. For example, the state
variables could be the length of the queue inside the access
link nodes and the rate of change of this length. For any
dynamic system, there exists an infinite number of choices
of state variables and system identification does not neces-
sarily select state variables with physical meaning. There-
fore, we will not be able to assign a particular meaning to
��. Only the input and output vectors, �� and ��, will
have well-defined physical meanings in this paper. The sub-
space system identification provides the system matrices,�,
�, �, and �, that describe how the input affects the state
variables and the output. Moreover, the subspace modeling
quantifies the the measurement error, ��, and system noise,
��� in terms of the covariance (cov) matrix of the measure-
ment error,	. Subspace modeling also allows us to specify
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Figure 5. Model extraction and validation

a particular, as well as a recommended, system order �.1

3.1. Experimental Setup

We use the experimental network testbed shown in Fig-
ure 4 for both modeling (i.e., calculating the above system
matrices) and evaluation. It consists of Linux-based soft-
ware routers and end-hosts. The traffic controls built into
the Linux kernel [2] enable construction of FIFO queues as
well as traffic regulators that are used to enforce the control
signal. A fast Ethernet-based ring network topology, with
link capacity of 100 Mbps, is used so that the one-way de-
lay may be measured without sophisticated (and sometimes
inaccurate) time synchronization such as NTP or GPS. The
ring topology was built using Linux iptables installed on the
forwarding router. Premium traffic is generated at host H,
traverses one or more access routers (representing the access
link under study), then the forwarding router, and finally,
terminates at host H again (i.e., forming a ring topology).
Hosts 1,. . . ,� are used to generate non-premium traffic that
shares the links and FIFO router(s) with the premium traf-
fic. We use multiple non-premium sources to mimic a real
network where traffic comes from multiple subnets sharing
the same access link. All measurements, analysis, model-
ing and control calculations are done on host H. We use
“non-responsive” UDP traffic sources that can be instructed
to generate traffic according to a specific input signal cho-
sen based on a given experiment scenario regardless of the
losses or delays at the bottleneck. This allows us to control
the exact non-premium rate without interference from ei-
ther congestion- or flow-control mechanisms. However, in
Section 6, we also evaluate CONNET with TCP traffic and
show its effectiveness even with the TCP congestion control
algorithm.

3.2. Model Extraction

In the first phase of experiments, our main goal is to cal-
culate the system matrices of the model in Eq. (1). We use

1By calculating the singular values of the system.

an input signal � depicted in top plot of Figure 5(a) for es-
timating the model parameters. It consists of a ramp-up-
ramp-down traffic sending rate that ranges from 1.5 Mbps
to 95 Mbps of non-premium traffic during a small constant-
rate period. This rate is always higher than that of premium
traffic which is a 1 Mbps CBR.2 All traffic sources use same
packet length of 1000 bytes. The corresponding measured
output delay and jitter for the single FIFO node case are de-
picted in the lower plots of Figures 5(a).

One-way delay (�) and jitter (�) are measured at host H,
and sampled every �� by a timer-operated traffic monitor
listening on the receiving network interface. We use
�� � � sec, or equivalently a sampling frequency of �
Hz. The UDP header3 in each packet carries time-stamps
to enable delay and jitter calculations. Delay and jitter
measurements also pass through a weighted moving av-
erage (WMA) filter calculated for jitter, as an example,
as � � � � ����� � �� ��� � ��	�, where ��� � �� �� is the
delay variation between packets � and ��� ��. To determine
the order of the system model, we tried several options,
and found from experiments that choosing a second order
model (i.e., � � �) is good enough to capture the dynamics
of the system and achieve the required goal. Accordingly,
the thus-acquired systems matrices for the single-node case
are:
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From this model, we calculate the open-loop system’s
discrete-time poles to be 0.8770 and 0.1733, which indi-
cates a stable system model (poles are inside the unit cir-
cle). In order to get a better view of the difference between
the model behavior (from MATLAB simulation) and the real

2Real-time applications usually send constant-bit-rate UDP traffic.
3We use RTP-like headers.
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system behavior (from experimental data), we plot the aver-
age values of the output delay and jitter versus the input �
for both outputs in Figures 5(b) and 5(c); the resulting model
is linear, while the real system is not. However, the model
is the best-fit for the experimental data and is good enough
for building the feedback control.

4. Design of Feedback Control

The feedback-control loop around an access link is to en-
force the user-/application-specified delay and jitter refer-
ences of the premium traffic. This reference-tracking con-
trol is required to have a smooth response at an adequate
speed. Large overshoots or undershoots would make a
negative impact on the network traffic performance, espe-
cially with responsive congestion- and flow-control proto-
cols, such as TCP.

In the state-space digital control design, unmeasurable
states (�) of the system, as in the case of access links, are
estimated (
�) using the measured input–output samples of
the system.4 The estimated states are then used to gener-
ate the feedback-control signal to act as input to the sys-
tem for the next sampling period. In order to overcome in-
accuracies in the system model (e.g., caused by lineariza-
tion), robust control is preferred to other regular control de-
signs. Robust control can also deal with changes and un-
certainties in the system model and input conditions. The
LQR (Linear Quadratic Regulator) controller [7] fits well
this design criterion and achieves a good balance between
system response and the control effort required. For state
estimation, we employ the Kalman filter [7], which works
well with experimentally-derived models.5 By putting all of
these blocks together, the feedback control loop is formed
as illustrated in Figure 6.

4.1. Design of the LQR Controller

The control law, based on the system’s estimated state
vector, 
�, is given by:

�� � ��	�� (2)

4This is possible because the system’s dynamic model is observable.
5It accounts for process noise and measurement errors.

where � is the control gain to be designed based on the
system matrices,� and�, and two weighting matrices,��

and ��, that minimize a certain cost function [7]. We use
MATLAB to calculate the controller gain as:
� � ����������������	� �

4.2. Design of the State Estimator

The states estimates (
�) are iteratively calculated in terms
of successive samples of output �� or ���� ���

� , reference
� or ����� �

�
��
� , previous-step input, and previous-step state

estimate as:

	���� � ��� 
��	�� � ��� 
���� � 
��� � �� (3)

where 
���� and 
�� are the state estimates at step 
�� and

, respectively. �, �, �, and � are the system matrices
from the model (i.e., Eq. (1)), while� is the controller gain
derived above and � is the estimator gain. This formula is
used to update the states in real time during control. The
initial state, 
��, is set to zero, and the closed loop starts
building up from that point. The estimator gain, �, is
optimally chosen to reduce the effects of both the process
noise and the measurement error [7]. Using the MATLAB
built-in Kalman filter function, we calculated the required
estimator gain as:


 �

�
������� ����
�
�����	 ���
��

�
�

4.3. Simulation and Verification

In order to simulate a closed-loop system along with its
controller and estimator, we manipulate Eqs. (1), (2), and
(3) to get the closed-loop dynamics in terms of the original
and estimated states:6

�
����
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�
�

�
� ���


� ����� 
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��
��
	��

�
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��
���
���
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��

����
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�
� �� ����

�
��
	��

� (4)

This system of closed-loop equations has the references
���� ���

� as the input, and ������ �����
� as the output, and

represents the closed-loop system in Figure 6. The closed-
loop system is simulated with a time-varying reference in-
put using MATLAB, and the resulting delay and jitter are
plotted in Figure 7. From this plot we observe the con-
troller’s efficiency in tracking the delay and jitter references
without overshoots or undershoots. The resulting discrete-

6Derivation is straightforward and omitted due to space limitation.
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time closed-loop poles of the single-node system are 	�
��
,
	����, 	�		��, and 	�	
��, hence a stable closed loop. The
closed-loop bandwidth (control frequency) is 	�����Hz, in-
dicating that a sampling frequency of � Hz is suitable when
compared to the closed-loop bandwidth.

5. Implementation of the Control and Actua-
tion Algorithms

To control the rate of non-premium traffic, we employ
traffic regulators in the form of token bucket filters applied
at the non-premium sources as shown in Figure 8. This fig-
ure also illustrates the control steps executed inside host H,
as described in the control algorithm of Figure 9. The traf-
fic regulators are controlled by a signal communicated from
H. The computation and communication of the control sig-
nal are to be completed within one sampling period (��)
and hence, a separate thread is assigned to communicate the
control signal to each of the non-premium traffic regulators.
The measurement thread is interrupted every �� to sample
the current delay and jitter values, and calculate the control
signal using a combination of Eqs. (2) and (3).

At each sampling instant, �:

Begin

1. Read measured �� and ��

2. Use ���, �� from previous step (� � �)

3. Apply Eq. (3) to get �����

4. Apply Eq. (2) for step � � � and get ����

5. Check control signal saturation (� � � � ��� Mbps)

6. Create control threads to apply signal,

one thread per source

7. Each control thread sends control signal to

traffic regulators

8. Traffic regulators adjust the total non-premium

rate to ����

9. Store values of ���� and ���� for next step

End

Figure 9. Control algorithm

6. Experimental Evaluation

We evaluate CONNET experimentally for different sce-
narios, reflecting several aspects of the controller perfor-
mance. We divide the experimental results into two sets:
one for a single FIFO node and the other for a multi-node
FIFO pipe. Important and interesting points in the results
for each scenario are identified and discussed.

6.1. Experimental Setup

We use the same testbed network illustrated in Fig-
ure 4 for experimental evaluation with 3 non-premium traf-
fic sources, each running 2 flows7 with a total of 6 non-
premium flows. We use 3 traffic regulators, one for each
traffic source, all controlled by the control algorithm run-
ning on host � . During evaluation, unless otherwise men-
tioned, each non-premium traffic source sends constant-bit-
rate (CBR) UDP data at the maximum rate allowed by the
network, which is 100 Mbps. This allows for actual testing
of the controller when the network encounters high loads.

6.2. A Single FIFO Node

For the case of a single FIFO node shared by premium
and non-premium traffic, we consider the following experi-
ment scenarios:

6.2.1. Constant Reference Tracking

In the first scenario, we study the controller’s performance
in tracking a constant reference for both delay and jitter. The
experiment is started with traffic regulators at non-premium
sources (see Figure 8) turned on while each source is send-
ing data at the maximum link capacity of 100 Mbps, and
then left on for the rest of the experiment duration of 100
seconds. We use a delay reference of 0.46 msec and a jitter

7To increase statistical multiplexing between packets.
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Time (sec) �� (msec) �� (msec)

0 - 200 0.70 0.42
201 - 400 1.10 0.63
401 - 600 0.60 0.36
601 - 800 0.92 0.60
801 - 1100 0.46 0.0437
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Figure 11. Variable reference tracking

reference of 0.043 msec. Figures 10(a) and (b) plot the mea-
sured delay and jitter as well as their reference values, con-
firming the fact that the controller can achieve the required
delay.

6.2.2. Step Response

In the second scenario plotted in Figure 10(c), the step re-
sponse of the system is plotted with respect to jitter as an
example. A step jitter reference of magnitude 1.028 msec
is applied to the controller shortly after starting the experi-
ment, and then kept constant for the rest of the experiment
duration of 100 seconds.

6.2.3. Controller Activation During Run-time

The third scenario, plotted in Figure 10(d), illustrates what
happens when the controller is turned on during a heavily-
loaded network operation. The experiment is started while
all traffic regulators were turned off and non-premium
sources are sending data at a rate of 70 Mbps resulting in
a delay of around 1.1 msec and a jitter of 0.6 msec. At 100
sec (the total experiment time is 400 sec), the controller is
turned on with the reference values of 0.534 msec and 0.145
msec for delay and jitter, respectively. As indicated in the
figure, the controller reacts instantaneously to regulate the
non-premium traffic so that the delay and the jitter may fol-
low their reference values as closely as possible.

6.2.4. Variable Reference Tracking

To further illustrate the dynamics of the delay and jitter con-
trollers using non-premium traffic regulation, we provide

the fourth scenario where a variable reference signal is used
to reflect a certain scenario when demands and requirements
change throughout the day/hour. The experiment lasts for
1100 sec, and the reference values of delay and jitter change
every 200 sec. Figure 11(a) shows the reference values used
in this scenario for both delay and jitter as an example of a
variable reference signal. The output delay is plotted in Fig-
ure 11(b), while the output jitter is plotted in Figure 11(c).
The control signal, �, is plotted in Figure 11(d), indicating
saturation8 between times 246 and 400 sec. This is a very
common case in real feedback control systems, and CON-
NET recovers from that.

6.3. Multi-Node FIFO Networks

For all the following experiment scenarios, we use a
FIFO pipe that consists of 3 FIFO nodes connected to each
other. All premium and non-premium traffic enters the pipe
only via the first node, and exit from the third node. No cross
traffic is introduced (see Section 6.4 for further comments).

6.3.1. Dealing with Non-premium TCP Traffic

Instead of using non-premium UDP traffic, in this scenario
we use TCP sources to investigate the TCP friendliness and
effectiveness of CONNET in dealing with TCP congestion
control. The LQR controller works carefully not to have
large overshoots or undershoots, and this feature works well
with TCP. Figure 12(a) plots the performance of delay con-
trol, bringing it to the reference value. Figure 12(b) shows

8We set saturation level at 95 Mbps for all experiments.
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Figure 12. Non-premium TCP traffic

the resulting throughput of 6 TCP sources used in compar-
ison with a target rate of 9.167 Mbps. The target rate indi-
cates the actual rate needed to achieve the reference values
of delay and jitter taken from Figure 3(a), divided by 6. The
regulated TCP traffic could reach the same target rates and
did not suffer congestion collapse or any loss of utilization,
indicating that CONNET works well with TCP as well as
UDP background traffic.

6.3.2. Fault-tolerance and Uneven Load Distribution to
Regulators

In the following two scenarios, we present a very important
and powerful feature of CONNET, “fault-tolerance.” Here
we examine the case when one or more traffic regulators
fail and opens the door for unregulated non-premium traffic.
We first test the case of a single regulator failure, where the
experiment is started with all 3 traffic regulators working,
then at time 100 sec, one of the 3 regulators fails, allow-
ing unregulated traffic at 50 Mbps to enter the network pipe
from the corresponding non-premium source. Then, after
another 150 sec, the failed traffic regulator is fixed and re-
stored back to work again for the rest of the experiment du-
ration of 400 sec. Figure 13(a) shows the delay during this
scenario with the times of failure and repair indicated. Jitter
has a similar performance and omitted due to space limita-
tion. When the failed regulator is repaired at 250 sec, the
network returns back to normal again and keeps delay and
jitter at their reference values. Figure 13(b) shows the rate
sent to the remaining operating regulators during this fail-
ure, and the controller reacts to this failure by almost shut-

ting off the other two traffic sources to keep premium traffic
performance at the required level.

We investigate further what happens when 2 out of 3 reg-
ulators fail at time 100 sec, then one of them comes back to
work at time 200 sec, and all three of them come back to
work at time 300 sec. This is illustrated in Figures 13(c) and
(d). The first figure plots the delay, showing a similar behav-
ior at the time of failure. However, this time the controller
was not able to drive the delay to the reference value during
the time of 2 failures. To see why this happened, the second
figure plots the output control rate from the controller. Since
the control rate cannot be below zero, the controller cannot
change the control signal any more and becomes helpless.
When one of the failed regulators was fixed to work again,
the controller catches up and sends a correct control signal
to bring the output delay back to its reference value. Finally,
when all the three regulators work again, the network goes
back to normal. These two scenarios indicate that CONNET
can survive up to one third (1/3) of regulator failures in case
of our testbed network, and we also expect a similar perfor-
mance when it is deployed on larger networks.

Another feature of the control algorithm is its ability to
apply uneven control rates at different traffic regulators. We
demonstrate this ability with the following scenario, where
the control rates are distributed unevenly among 3 traffic
regulators. The first one gets 50% of the control rate, the
second one 35%, and the third one 15%. Again, the con-
troller was able to work well in this case and brings both
the delay and the jitter to their reference values as shown in
Figure 15(a). This allows for setting up a control policy to
favor some trunks over others.

6.3.3. Comparison with CBQ and WFQ

We now compare CONNET with other well-known schedul-
ing algorithms, such as Class-Based Queueing (CBQ) [6]
and Weighted Fair Queueing (WFQ) [4]. We compare the
delay and jitter performance while applying a variable non-
premium traffic, as shown in Figure 14(a), to the access link
pipe. In this scenario, instead of FIFO queues, we set up
the CBQ discipline on all of the three router nodes, where
a bandwidth of 2 Mbps is allocated to premium traffic and
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the rest is given to non-premium traffic. The delay is plot-
ted in Figure 14(b), and in the same figure, we also plot the
performance when CONNET is activated with FIFO nodes
in place of CBQ. Clearly, the CBQ performs worse than
CONNET, and both delay and jitter increase with the input
rate, while under CONNET, they follow the reference val-
ues. CONNET’s performance improvement at a high non-
premium rate is 100% for delay, and 54% for jitter.

WFQ is used to achieve a combination of good band-
width allocation as well as delay/jitter protection. We com-
pare the proposed control scheme with WFQ,9 showing that
CONNET can still outperform WFQ in tracking low refer-
ence delay/jitter values. In this experiment, WFQ automat-
ically assigns a new virtual queue to each flow with equal
weights. Figure 14(c) shows a significant improvement for
the controlled delay over WFQ (about 80%) using the same
input in Figure 14(a). Although WFQ can achieve low jitter
even with high loads, CONNET could achieve lower jitter
with an almost 70% improvement as shown in Figure 14(d).
The jump at time 200 sec is due to the controller transients.
We also compare the delay performance with the case of
uncontrolled delay in Figure 15(b) to show the degree of the
absolute improvement by CONNET. The uncontrolled de-
lay on our FIFO network could reach values up to 8 msec
without WFQ or CONNET.

9Using WFQ implementation on Free-BSD ALTQ [3].

6.4. Assumptions, Limitations and Extensions

Beside showing the effectiveness of CONNET, we state
the assumptions we made as well as its limitations.

The first assumption is that all non-premium traffic is
controlled and enters the FIFO pipe via the front-end while
exiting the rear-end. This reflects the actual case where ac-
cess links are usually short enough (one to three hops) to
have little cross traffic. Second, we assume that there is
an adequate method for measuring run-time delay and jit-
ter across the access link/pipe in order to feed the error back
to the controller. We also assumed throughout the paper that
the premium traffic cannot by itself exceed the access link
capacity or available resources. In other words, we do not
consider admission control on premium traffic.

One of the limitations of the current version of CONNET
is not dealing with burst control along with rate control. We
use only one control input, which is the non-premium traffic
rate. In future, we would like to design a two-input con-
troller that can control both the rate and the burst of non-
premium traffic.

7. Related Work

While feedback control theory [7] has been used for
decades in many engineering and scientific disciplines, such
as mechanical and aeronautical engineering, only recently
its effectiveness in solving network control problems has
been realized (for example, see [9–11, 13]). The main goal
of CONNET is different from others since we are look-
ing at delay and jitter guarantees in networks with two or
more services classes. More recent studies that use control-
theoretic approaches to performance guarantees were re-
ported in [1,8,15]. These studies focused on server-side con-
trol, such as web servers or Lotus Notes email servers. Al-
though the domains of these studies are different from those
of CONNET, network and traffic control, they are useful ex-
amples for us to illustrate many aspects in computer-based
control design. The type of control closer to that used in
this paper is Adaptive Bandwidth Control (ABC) [16] and
the references thereof. CONNET differs from this type of
work in that it does not apply control inside the node itself



(by changing the service rate), but uses an outside traffic
controller, which is much easier to deploy without modify-
ing the existing network routers. CONNET is also different
from rate-based scheduling techniques such as that in [20],
as we study single FIFO queues and do not employ any par-
ticular scheduling mechanism (other than FIFO).

8. Conclusions

We have presented a new simple, yet robust delay and jit-
ter control mechanism, called CONNET, for premium traffic
that shares bottleneck access links with non-premium traf-
fic. CONNET is reservation-less and based on the relation-
ship observed between the delay/jitter of premium traffic
and the amount of non-premium traffic sharing the same ac-
cess link. We took a control-theoretic approach to studying
the delay and jitter control on FIFO-based access links, and
presented the design and implementation of feedback con-
trol on a testbed network using the LQG regulator. CON-
NET creates automatic and self-controlled network services
that require minimal operational effort. We evaluated the
performance of CONNET under various experimental sce-
narios to show its correctness, accuracy and robustness. We
also compared CONNET with other well-known rate-based
disciplines such as CBQ and WFQ, revealing its significant
improvement in delay and jitter performance over the other
schemes. Since it is designed to handle single-FIFO-queue
networks, CONNET provides a better solution for today’s
FIFO-based Internet without requiring any modification or
any special scheduling mechanism in the network routers. In
future, we would like to address the limitations of the cur-
rent version of CONNET, and explore ways of integrating
it into a more general traffic control framework that creates
self-controlled network services across the Internet.
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