
Shape Shifting Tries for Faster IP Route Lookup

Haoyu Song, Jonathan Turner, John Lockwood
Applied Research Laboratory

Washington University in St. Louis
Email: {hs1,jst,lockwood}@arl.wustl.edu

Abstract

Some of the fastest practical algorithms for IP route
lookup are based on space-efficient encodings of multi-bit
tries [1, 2]. Unfortunately, the time required by these al-
gorithms grows in proportion to the address length, mak-
ing them less attractive for IPv6. This paper describes and
evaluates a new data structure called a shape-shifting trie,
in which the data structure nodes correspond to arbitrar-
ily shaped subtrees of the underlying binary trie for a given
set of address prefixes. The ability to adapt the node shape
to the trie reduces the number of nodes that must be ac-
cessed to perform a lookup, especially for tries with large
sparse regions. We give a fast algorithm for optimally divid-
ing a trie into nodes so as to minimize the maximum lookup
depth. We show that seven data structure accesses are suffi-
cient for route tables with more than 150,000 IPv6 prefixes.
This makes it possible to achieve wire-speed processing for
OC192 link using a single QDRII SRAM chip.

1 Introduction

The growth of Internet traffic and the growing complex-
ity of packet processing are placing extreme demands on
the design of high performance routers. More flexible and
efficient methods are needed to perform high performance
packet classification and route lookup.

Longest Prefix Matching (LPM) is now a well-
understood problem, for which there is a variety of high
performance algorithmic solutions [3, 4, 2, 5]. However,
the expected deployment of IPv6, and the use of LPM as a
component within more general packet classification mech-
anisms [6, 7, 8] create new challenges, justifying continuing
efforts to improve the performance of LPM algorithms.

Some of the most successful methods for LPM are es-
sentially high performance variants of the basic binary trie.
The simplest variant of the binary trie is a multibit trie, in
which binary nodes are replaced with d-ary nodes for val-
ues of d > 2. This can dramatically reduce the number of

memory accesses required, at the cost of less efficient use of
memory. The tree bitmap algorithm [2] can be viewed as a
clever encoding of a multibit trie that dramatically reduces
the memory penalty associated with a naive implementa-
tion. For each node in a multibit trie, tree bitmap uses a pair
of bit vectors to represent the subset of the “potential chil-
dren” that are actually present and the prefixes associated
with the given node. Children of a node are stored in con-
secutive memory locations, allowing each node to use just
a single child pointer. Similarly, the next hop information
associated with a node is stored in a group of consecutive
memory locations, allowing use of a single pointer to refer-
ence the next hop information. This representation allows
every node in the multibit trie to be represented with a small,
constant-size record. A tree bitmap implementation with an
initial on-chip table of 8K entries (covering the first 13 bits
of the IP address) and a stride of five needs just four off-chip
memory accesses to traverse an IPv4 trie, with one or two
additional accesses to retrieve the next hop information.

Unfortunately, the time needed for trie-based lookup
mechanisms grows linearly in the address length, making
them less attractive for IPv6. Reference [5] describes an al-
gorithm whose complexity grows logarithmically in the pre-
fix length, making it much more attractive for IPv6. How-
ever, the algorithm is relatively complex to implement and
its use of pre-computed markers to guide the search makes
it difficult to support incremental update. An alternative
approach is to extend trie-based algorithms to make them
more efficient for longer address fields. The key observa-
tion needed to enable this is that as address lengths grow,
the structure of the underlying binary trie intrinsically be-
comes more and more sparse. This provides an opportunity
to use alternate encodings that better match the structure of
the binary trie. The Shape-Shifting Trie (SST), which we
develop in this paper, is constructed from nodes that corre-
spond to arbitrarily shaped subtrees of the underlying binary
trie. This allows the SST to conform to the structure of the
underlying binary trie, significantly reducing the number of
SST nodes that must be traversed to perform a lookup.

The rest of the paper is organized as follows. Sections

2 and 3 discuss the SST coding scheme and the IP lookup
algorithm, respectively. Section 4 describes the SST con-
struction algorithm. Section 5, introduces two additional
optimizations that remove redundancies from the underly-
ing binary trie, providing additional performance improve-
ment. An improved hybrid algorithm is introduced in Sec-
tion 6 and the reference implementation is discussed in Sec-
tion 7. The algorithm performance is evaluated for both
IPv4 and IPv6 tables in Section 8. Incremental update of
SST is discussed in Section 9. Section 10 summarizes the
related work and we conclude the paper in Section 11.

2 SST Representation

The nodes of an SST correspond to subtrees of the un-
derlying binary trie, with up to K nodes, where K is a pa-
rameter of the data structure. Since these subtrees can have
an arbitrary shape, each SST node includes a shape bitmap
(SBM) that represents the subtree’s shape. The encoding
we use was described by Jacobson [9]. To encode a tree, we
first augment the tree with additional dummy nodes. Each
original node with no children, gets two dummy children.
Each original node with one child gets one dummy child.
We then associate a bit with each node in the augmented
tree. The value of this bit is ‘1’ for each of the original
nodes and ‘0’ for each of the dummy nodes. The shape
bitmap consists of this set of bits, listed in breadth-first or-
der. We omit the bit corresponding to the root, since this
bit is always ‘1’. The shape bitmap for a tree with K orig-
inal nodes has 2K bits and any tree with up to K nodes
can be represented by a shape bitmap with 2K bits. We can
also view the shape bitmap as associating two bits with each
original node. These bits indicate which of the node’s po-
tential children are present in the tree. In our illustrations,
we typically adopt this viewpoint, to avoid showing dummy
nodes explicitly.

In addition to the shape bitmap, an SST node includes an
internal bitmap (IBM) with K bits. This identifies which
of the binary trie nodes has an associated prefix. An SST
node also includes an external bitmap (EBM) with K + 1
bits that identifies which of the potential “exit points” from
the subtree corresponds to an actual node in the underlying
binary trie. The bits of the internal and external bitmaps are
listed in breadth-first order of the corresponding nodes.

Each SST node also includes two pointers. The child
pointer points to the first SST node that is a child of the
given SST node. The next hop pointer points to the next hop
information for the first binary trie node in the SST node
for which there is a prefix. The children of a given SST
node are stored in sequential memory locations (allowing
us to access any of the children using the pointer to the first
one). Similarly, the next hop information for all the nodes
is stored in sequential locations, allowing us to access the

next hop information for any binary node, given a pointer to
the next hop information for the first binary node for which
there is a prefix.

Figure 1 shows a binary trie that has been divided into
subtrees of size less than or equal to three, along with the
corresponding shape-shifting trie.

0 1

0 1

1

1

0

0

SBM: 01 01 00
IBM: 1 0 1
EBM: 1 0 1 1
Child NextHop

SBM: 10 00
IBM: 0 1
EBM: 0 0 0
Null NextHop

SBM: 00
IBM: 1
EBM: 0 0
Null NextHop

SBM: 11 00 00
IBM: 0 1 1
EBM: 0 0 0 0
Null NextHop

NextHop(a)
NextHop(e)

NextHop(d)
NextHop(f) NextHop(i)

NextHop(h)

a c e

b d f g h i

Figure 1. An SST with K=3 and the corresponding data
structure. The darker binary trie nodes represent valid pre-
fixes.

3 Lookup in an SST

The lookup process in an SST is similar to the lookup
process for the tree bitmap algorithm [2]. The search pro-
ceeds recursively, starting from the root. At each step, we
use bits from the address prefix to move through the subtree
of the binary trie represented by the current SST node. We
use the shape bitmap and external bitmap to allow us to de-
termine if the search terminates at this node or continues to
one of its children. If it does continue to a child, we find
the bit in the external bitmap that corresponds to the child
and count the number of ‘1’s in the bitmap that precede this
bit. We then use this number as an offset to the child node
of interest, from the array of children starting at the location
specified by the child pointer. An example illustrating this
process is shown in Figure 2.

The basic step in the search algorithm requires decoding
the shape bitmap. The key step is to find the bits in the shape
bitmap that correspond to nodes in the path traversed by a
search using bits from the IP address prefix. We start by
defining ni to be the number of nodes at distance i from the
root of the augmented version of the subtree represented by
the SST node (including dummy nodes). We let fi denote
the position of the bit in the shape bitmap that corresponds
to the first node at distance i from the root. Note that n1 =
2, f1 = 0 (since we omit from the shape bitmap the bit
corresponding to the root) and fi = fi−1 +ni−1. We define
ones(i, j) to be the number of ones in the shape bitmap in
the range of bits from i through j, and note that ni = 2 ×
ones(fi−1, fi − 1).

0 1

0 1

1

1

0

0

SBM: 01 01 00
IBM: 1 0 1
EBM: 1 0 1 1
Child NextHop

SBM: 10 00
IBM: 0 1
EBM: 0 0 0
Null NextHop

SBM: 00
IBM: 1
EBM: 0 0
Null NextHop

SBM: 11 00 00
IBM: 0 1 1
EBM: 0 0 0 0
Null NextHop

NextHop(a)
NextHop(e)

NextHop(d)
NextHop(f) NextHop(i)

NextHop(h)

NextHop Pointer Offset = 1
Child Pointer Offset = 1

a c e

fb d g h i
+1

+1

Figure 2. Assuming the IP address under lookup is
“1100”. The first SST node lookup returns the child pointer
and the best matched prefix so far; the second SST node
lookup returns the best matched prefix.

Next, we let ai be the i-th bit of the IP address that
is relevant to the node currently being decoded (so a1 se-
lects a child of the root of the subtree represented by the
current node). We also let pi be the index in the shape
bitmap corresponding to the node on the path specified by
the IP address that is at distance i from the root of the
subtree. With these definitions, p1 = a1 and for i > 1,
pi = fi + 2 × ones(fi−1, pi−1 − 1) + ai.

Now, if i is the smallest integer for which the shape
bitmap at position pi is zero, then pi corresponds to the
point where the search on the IP address leaves the sub-
tree represented by the current SST node. To determine
if the search continues to another SST node, we need to
consult the external bitmap. The position in the external
bitmap that must be checked is the one with index equal to
zeros(0, pi − 1) where zeros(i, j) is defined to be the num-
ber of zeros in the shape bitmap in the range of bits from i
through j. If x is the index of the proper bit in the exter-
nal bitmap, and if bit x of the external bitmap is equal to
‘1’, then the search continues at a child of the current SST
node. To find the next SST node, we add an offset to the
child pointer. This offset is equal to the number of ones in
the external bitmap preceding bit x.

Consider the example shown in Figure 2. In the root
SST node, we find n1 = n2 = n3 = 2, f1 = 0, f2 = 2,
f3 = 4, p1 = 1, p2 = 3, p3 = 4. Since bit p3 of the shape
bitmap is the first of the pi bits that equals zero, we count
the number of zeros in the shape bitmap preceding position
4. Since there are two zeros, we consult position 2 in the
external map to determine if the search continue to another
SST node. Since bit 2 of the external bitmap is 1, there is an
extending path. Also, since there is a single 1 in the external
bitmap before bit 2, we add 1 on to the child pointer to find
the next SST node.

There are several ways to implement the lookup process
for a single SST node. One conceptually simple approach
is to use the equations derived above to define a combina-

tional circuit that computes the values of pi for 1 ≤ i ≤ K .
This is fast, but does require a relatively large amount of
circuitry. A simpler alternative is to use a sequential circuit
that for i ≥ 1, computes values of ni, fi and pi iteratively
on successive clock ticks, terminating as soon as the shape
bitmap at position pi is equal to zero. This takes up to K
clock ticks, plus another clock or two to decode the external
bitmap and add the offset to the child pointer for the next
memory access.

While the time needed to decode an SST node sequen-
tially can be fairly long, note that the overall time to per-
form a lookup is essentially one clock tick per address bit,
plus one memory access time per SST node searched. Since
the lookup process does not change the SST, we can have
multiple lookup engines operating in parallel on different
packets, with their memory accesses interleaved. Thus, the
time to do a lookup at a single node only affects the number
of engines required, not the throughput. The throughput is
a function only of the memory bandwidth and the number
of memory accesses needed per lookup. See [10] for a de-
scription of how this technique is used with the tree bitmap
algorithm of [2].

4 Constructing Optimal SSTs

A given binary trie can be represented by many different
SSTs, depending on how the binary trie is partitioned. Since
our primary concern is minimizing the search time, we fo-
cus on SSTs that have minimum height, where the height of
a tree is defined as the length of a longest path from the root
of the tree to a leaf.

However, we start by considering how to find an SST
with a minimum number of nodes, ignoring the question of
height. This can be done using a post-order traversal of the
binary trie, pruning off subtrees to form SST nodes. Let
s(x) be the number of nodes in the subtree of the current
pruned binary trie with root x. When we visit node x in a
post-order traversal, we perform the following step.

1. if s(x) = K , prune the subtree at x and assign all of
its nodes to a new SST node.

2. otherwise, if s(x) > K and x has children a and b
with s(a) ≥ s(b), prune the subtree at a and assign its
nodes to a new SST node.

We call this the Post-Order Pruning (POP) algorithm. Fig-
ure 3(a) shows an example of the partitioning produced by
the POP algorithm for K = 3. Figure 3(b) also shows
a minimum height partitioning. Notice that the minimum
height partition has a height of one and yields five SST
nodes, while the minimum size partition has a height of
three and yields four SST nodes. The example makes it
clear that a single SST cannot be optimal with respect to
both criteria.

Theorem 1 The SST constructed by the POP algorithm for
a given binary trie has the minimum number of nodes.

We sketch the proof of the optimality of the POP algo-
rithm. We claim that the algorithm maintains the following
invariant.

• Invariant: after every step, there is some SST with
a minimal number of nodes that includes all the SST
nodes formed so far.

This is clearly true when the algorithm starts and if it is true
when the algorithm completes, then the constructed SST
must be optimal. So, it suffices to show that the pruning
rules maintain the invariant. Consider an application of the
first pruning rule and let T be a minimum size SST that in-
cludes the nodes formed so far. If T does not form a node
from the entire subtree at x, then at least one descendant
of x must be in a different SST node than x is. This SST
node cannot contain any nodes that are not descendants of
x. Consequently, we can modify T so that it does form a
single node from the subtree at x. The partition that T im-
poses on the rest of the binary trie remains unchanged. This
SST cannot have any more nodes than T has.

Now, consider the second pruning rule. Again, let T be
a minimum size SST that includes the nodes formed so far.
Note that due to the post-order traversal, K > s(a) ≥ s(b).
Because s(x) > K , T cannot form a single node from the
subtree at x. Any subtree that is pruned from the subtree at
x leaves behind at least 1 + s(b) nodes. Consequently, we
can modify T so that it includes a node for the subtree at
a, but is otherwise unchanged. This modified SST cannot
have any more nodes than T . So far the optimality of the
POP algorithm is proved.

We now turn our attention to constructing minimum
height SSTs. This requires a somewhat more complicated
method that we call the Breadth-First Pruning (BFP) algo-
rithm. BFP operates in multiple steps, successively pruning
off subtrees with at most K nodes. It starts by computing
s(x), the number of descendants of node x in the binary
trie, for each binary trie node x. It then repeats the follow-
ing step until there is nothing left of the binary trie.

• Scan the current pruned binary trie in breadth-first or-
der. Whenever a binary trie node y with s(y) ≤ K is
found, prune y and its descendants from the trie and
assign them to a new SST node. For all ancestors x of
y, subtract s(y) from s(x).

BFP can be implemented to run in O(n2) time, where
n is the number of nodes in the underlying binary trie. We
now show that it does produce minimum height SSTs.

Consider any minimum height SST for a given binary
trie. We say that a binary trie node u “belongs” to an SST
node x, if u is in the subtree corresponding to x. We assign

(a) (b)

Figure 3. Minimum size and minimum height partitions
of a binary tree.

each binary trie node u a label h(u) equal to the height of
the SST node it belongs to. To establish the optimality of the
BFP algorithm we first prove a few properties concerning
these labels.

Lemma 1 For any node u, the number of descendants v of
u (including u itself) with h(v) = h(u) is at most K .

Proof: Let S be the set of descendants v of u with
h(v) = h(u). Assume that S contains more than K nodes
and note that, they cannot all belong to the same SST node.
If U is the SST node that u belongs to, there must be some
node v in S that belongs to a child V of U . But the height of
U cannot equal the height of V , contradicting the assump-
tion that S contains more than K nodes. �

We call each of the steps performed by the BFP algo-
rithm a pass.

Lemma 2 After i passes of the BFP algorithm, the binary
trie contains no nodes u with h(u) ≤ i − 1.

Proof: Proof by induction. The basis i = 0 is trivially
satisfied, since h(u) ≥ 0 for all u.

For the inductive step, assume that at the beginning of
pass i, the trie contains no nodes u with h(u) ≤ i − 2.
Suppose that at end of pass i, there is some node u with
h(u) = i − 1. Since u was not removed from the trie, it
must have already been considered in the breadth-first scan
performed by BFP. Since it was not removed from the trie,
it must have had more than K descendants at the time it was
considered. But since all of its descendants v have h(v) =
i − 1, this contradicts Lemma 1. �

Lemma 3 Let x and y are two SST nodes formed by the
BFP algorithm in the same pass, then neither is an ancestor
of the other.

Proof: The BFP algorithm scans the underlying binary
trie in breadth-first order. In one pass, if a node is pruned,
all of its ancestors have already been scanned and will not
be touched again in the same pass. �

With these lemmas, we are now prepared to show that
BFP produces minimum height SSTs.

Theorem 2 The SST constructed by the BFP algorithm for
a given binary trie has the minimum height. The height is
one less than the number of passes performed by BFP.

Proof: Let r be the root of the binary trie and let T be
the SST constructed by BFP. By Lemma 2, the SST node
containing r is formed by the end of pass h(r) + 1. By
Lemma 3, no path from the root of T to one of its de-
scendants passes through more than one node formed in the
same pass. Hence, the height of T is at most h(r). Since
h(r) was defined relative to a minimum height SST, it fol-
lows that T has minimum height also. �

5 Optimizations on Underlying Binary Trie

Since the size of the underlying binary trie directly cor-
relates with the size of the SST, a smaller underlying trie is
preferred, in order to reduce the memory usage. The real
route lookup tables contain certain redundancies that can be
exploited to compress the underlying binary trie. We briefly
summarize two simple techniques called child promotion
and nearest ancestor collapse that can be used to remove
such redundancies. We need to note that these optimiza-
tions have little effect on the multibit trie algorithm.

Figure 4 illustrates the child promotion optimization. If
two child nodes of a binary trie node both represent valid
prefixes, we can use a one-bit shorter prefix to replace one
of these two longer prefixes without changing the LPM
lookup results. If this promoted child node is a leaf node,
we can safely delete this child node after the promotion.

C

A B

CA

B

C

A

B

0 1

0 1

0 1

1

0

1

Figure 4. Child Promotion: the darker nodes represent
the valid prefixes. We promote the prefix A in the first step
and C in second step.

To perform this optimization, after building the binary
prefix trie, we traverse the trie in the post order. If the two
child nodes of a binary trie node are valid prefixes, we pro-
mote one of them to be the parent node. If one of the chil-
dren is a leaf, we select it for promotion and delete the leaf.
We find this optimization works quite well. It deletes 5.23%
(5,426) of tree nodes and promotes 7,179 prefixes from the
Mae-West route lookup table. For the much larger IPv4
BGP table used in our earlier experiments, it deletes 10.78%
(52,585) of the tree nodes and promotes 74,804 prefixes.

Our second optimization is based on the observation that
for route lookups, it does not matter which prefixes are
matched, but rather what next hop is selected. The distinct
next hops is typically much fewer than the prefixes, making
it possible to eliminate certain prefixes. In general, if the
next hop of a node in the binary trie is the same as the next
hop of its nearest ancestor that corresponds to a prefix, we
can eliminate the first prefix. Figure 5 illustrates the nearest
ancestor collapse optimization.

2

1

1

2

1

Figure 5. Nearest Ancestor Collapse: the darker nodes
represent the valid prefixes and the number in the nodes in-
dicates the next hop.

The binary trie is traversed in the post order to perform
this optimization. For each valid prefix, we examine its
nearest ancestor which is also a valid prefix and compare
their next hops. If they are same, we delete the next hop
information in the longer prefix and invalidate this prefix. If
this node is also a leaf node, we recursively delete the nodes
upwards until we meet its nearest ancestor or a tree branch.

This optimization decreases the number of binary trie
nodes as well as the number of valid prefixes. Liu uses
similar technique to compress the route lookup tables and
shows that the number of valid prefixes can be reduced by
up to 26.6% [14].

6 A Hybrid Algorithm

The shape shifting trie method for longest prefix match-
ing is a generalization of the tree bitmap algorithm
(TBM) [2]. In both algorithms, the data structure node in-
cludes an internal bitmap, an external bitmap, a single child
pointer and a single next hop pointer. However, SST also re-
quires a shape bitmap that must be taken into account when
comparing the two.

If we let K = 2S be the SST node size, then an SST
node needs 4K + 1 bits for its three bitmaps. A TBM node
can use these bits to implement a multibit trie node with a
stride of S + 1, corresponding to a subtree of the binary
trie with 2K − 1 nodes. So, if the underlying binary trie is
dense, the TBM data structure can be more space-efficient
than the SST, but if the binary trie is sparse (fewer than half
the ”potential” nodes are actually present), the SST is more
space-efficient. Because such sparse subtrees are very com-
mon in the tries that represent large routing tables, SST is
typically more space-efficient than TBM.

The more important advantage of SST is its potential to
reduce the trie height. In the extreme case of a trie that con-
sists of one long path with m modes, a TBM data structure
has a height of approximately m/(S + 1) while a compa-
rable SST has a height of m/2S. For S = 4, this is more
than a three-to-one improvement. In practice we don’t ex-
pect such dramatic gains, but we do find improvements as
high as two-to-one for IPv6 in Section 8.

This discussion suggests that it may be worthwhile to use
a hybrid approach in which TBM nodes are used to repre-
sent dense parts of the trie, while SST nodes are used to
represent sparse parts. We use a bit in the node data struc-
ture to identify the format used for the current node. If the
bit specifies a TBM node, we use 2K + 1 bits for the exter-
nal bitmap, and 2K bits for the internal bitmap. If the bit
specifies an SST node, we use 2K bits for the shape bitmap,
K+1 bits for the external bitmap and K bits for the internal
bitmap. The hardware required to decode the two types of
nodes is simple enough that the cost of implementing both
types of lookup is not a significant issue.

When building a hybrid trie, we must decide which node
type to use. We modify the BFP algorithm to take this into
account. During each breadth-first scan, when we encounter
a node u, we first check to see if the height of the subtree
with root u is small enough to allow it to fit in a TBM-type
node. If it is, we prune the subtree and form a TBM-type
node. Otherwise, we check to see if the number of nodes in
the subtree is small enough to fit in a single SST node. If
so, we prune the subtree and form an SST-type node. Note
that whenever we encounter a node in a breadth-first scan,
we already know that the height of its parent is too large
for a TBM node and the size of its parent’s subtree is too
large for an SST node. Also, note that the height of the
hybrid data structure cannot be any larger than the height of
an optimal SST. On the contrary, the hybrid data structure
can potentially reduce the trie height further.

7 Reference Implementations

The performance evaluation to follow, is based on ref-
erence implementations of the TBM, SST and hybrid algo-
rithms. We assume that in all three cases, the lookup data
structure is stored in a 200MHz QDRII SRAM with a 36bit
wide data interface. These devices have a minimum burst
size of two words, which can be read and write in a single
clock cycle. In our reference implementations, the nodes
for each data structure are stored in three words. For the
TBM data structure (and for TBM nodes in the hybrid data
structure), this allows us to implement a stride of 5 (32 bits
for the external bit map, 31 bits for the internal bitmap). For
SST nodes, there is enough space for K = 16.

All three algorithms use a variation of the prefix bit opti-
mization described in references [2, 10]. This optimization

reduces the number of off-chip memory accesses substan-
tially. It’s based on the observation that we don’t really need
to look at the next hop pointer and the internal bitmap for
most nodes visited during a search. We only need to ex-
amine these fields for the node corresponding to the longest
prefix. The prefix bit optimization allows us to identify this
node, without looking at the next hop pointer and internal
bitmap fields of all but two nodes visited. The optimiza-
tion is implemented using an extra bit in each data structure
node. This bit is set to a ‘1’ if the portion of the underly-
ing binary trie corresponding to the parent node has a prefix
that is relevant to the child’s subtree. During the search,
we remember the parent of the most recently visited node
whose prefix bit was set. At the end of the search, we exam-
ine the next hop pointer and internal bitmap of this parent
node. We also examine the next hop pointer and internal
bitmap of the node where the search terminates. If all but
the next hop pointer and internal bitmap are placed in the
first two words of the three words used to store a data struc-
ture node, we only need to do one two-word access per data
structure node visited, plus one or two more to retrieve the
best matched next hop. Thus, if the data structure has a
height of H , the worst-case number of memory accesses is
H + 3.

These considerations lead to the node formats shown in
Figure 6. In all cases, the third word contains the internal
bitmap. For the SST node format it also contains the next
hop pointer. Because the parameter K for an SST node
does not have to be a power of two, one can increase the
SST node size at the expense of reducing the number of bits
in the child pointer. The child pointer size is set to 20. This
allows us to have up to a million SST nodes. We allocate 20
bits to the next hop pointer, allowing for up to a million pre-
fixes. Since the largest IPv4 prefix tables currently contain
fewer than 200,000 prefixes, this seems more than adequate.

1 P SBM

Node Type

EBM

1 1 32

EBM Child
Pointer

17 20

Next Hop
Pointer IBMSST-node

20 16

0 P

1 1

TBM-node
32

Child
Pointer

20

Next Hop
Pointer

20

IBM
313

Word 1 Word 2 Word 3

1

Figure 6. Data Structure Node Formats: K=16 for SST-
type node and S=5 for TBM-type node

8 Performance Evaluation

Using our reference implementations, we performed
simulations on real and synthetic IP route lookup tables to
examine the performance of our algorithms in terms of tree
height and tree size, which are determine the worst case

lookup throughput and the memory consumption. Specif-
ically, we compared three different algorithms: the tree
bitmap algorithm, the original BFP SST algorithm and the
BFP hybrid algorithm. We also provide the statistics of the
underlying binary trie for reference. In the simulation we
did not optimize the underlying binary trie. The parameter
settings are as shown in Figure 6.

8.1 Performance on IPv4 Route Lookup

To start, we simulated the algorithms for IPv4 lookup ta-
bles. We expect the largest performance improvement on
small tables since we can expect the prefix tree to be sparse
and contain a lot of long and skinny paths. However, we
are particularly interested in the algorithm performance on
very large IP lookup tables. We used a recent snapshot of
the AS1221 BGP table from [11] for analysis. This table
contains about 184K prefixes and has the prefix length dis-
tribution shown in Figure 7.

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

7.E+04

8.E+04

8 10 12 14 16 18 20 22 24 26 28 30 32
Prefix Length

of

 p
re

fix
es

Figure 7. Prefix Length Distribution of IPv4 BGP Table

The prefixes lengths are distributed from 8 to 32. Almost
half of the prefixes have length 24. Table 1 shows the test
results.

Table 1. IPv4 BGP Table Results
Trie # of Worst Case Memory

Height Nodes Throughput (Bytes)

Underlying Binary Trie 32 487,696 - -
Tree Bitmap 6 64,245 22.2M pkts/s 845.0K

BFP SST 5 49,177 25.0M pkts/s 648.3K

BFP Hybrid 4 33,094 28.6M pkts/s 436.3K

SST Optimal Bound 5 37,760 25.0M pkts/s 497.8K

In summary, the BFP Hybrid algorithm improves the trie
height by 33% and improves the trie size by 48% over the
tree bitmap algorithm. The BFP SST algorithms reach the
optimal trie height while the multibit trie is 1 layer taller.
On the other hand, both of the BFP SST and BFP hybrid
algorithms decrease the total number of nodes significantly
compared with the tree bitmap algorithm. Surprisingly, the

height and size of the trie generated by the BFP Hybrid al-
gorithm are even lower than the optimal bound for the pure
BFP SST case. In all cases, the tables are small enough to fit
in a single SRAM chip (4 MB chips are currently available).

Assuming we fully utilize the memory bandwidth by de-
ploying multiple lookup engines and interleaving the mem-
ory accesses, the BFP hybrid algorithm needs only 7 mem-
ory accesses in the worst-case, per route lookup. Since the
QDRII SRAM can perform 200 million two-word accesses
per second, it can sustain a throughput of 28.6 million pack-
ets per second. Assuming a worst case packet size of 40
bytes, the system can support 9.1 Gbps throughput, which
is close to the OC192 link rate.

8.2 Performance on IPv6 Route Lookup

Evaluation is somewhat more difficult for IPv6, as there
are no large real-world IPv6 routing tables available for
analysis. We start with an available IPv6 BGP table
from [11]. This table has fewer than 900 prefixes, with the
prefix length distribution shown in Figure 8.

0

100

200

300

400

16 32 48 64 80 96 112 128

Prefix Length

of

 P
re

fix
s

Figure 8. Prefix Length Distribution for IPv6 BGP Table

In this table, prefixes with length 32, 48 and 64 domi-
nate and only a handful of prefixes have length of 112, 126
and 128 bits. Table 2 shows the test results. We note that
the BFP SST and the BFP hybrid algorithms yield a trie
height less than one third that required by the tree bitmap
algorithm. This allows them to sustain a throughput that is
almost three times higher.

Table 2. IPv6 BGP Table Results
Trie # of Worst Case Memory

Height Nodes Throughput (Bytes)

Underlying Binary Trie 128 5,415 - -
Tree Bitmap 25 1,013 7.14M pkts/s 13.4K

BFP SST 8 530 18.2M pkts/s 7.0K

BFP Hybrid 8 491 18.2M pkts/s 6.5K

SST Optimal Bound 8 413 18.2M pkts/s 5.4K

One can argue that this comparison is unrealistic, since
current IPv6 address allocation schemes [12] use the lower

half of the 128-bit IPv6 address for an interface ID. This
makes it unnecessary to store more than the first 64 bits of
the IP address prefix in the trie. To correct for this, we do a
second comparison in which all prefixes with length longer
than 64 have been removed. Table 3 summarizes the re-
sults. In this case, the BFP SST and BFP hybrid algorithms
still provide more than a 2:1 reduction in the trie height and
nearly a 2:1 reduction in the trie size, when compared to the
tree bitmap algorithm.

Table 3. Trimmed IPv6 BGP Table Results
Trie # of Worst Case Memory

Height Nodes Throughput (Bytes)

Underlying Binary Trie 64 5,015 - -
Tree Bitmap 12 934 13.3M pkts/s 12.3K

BFP SST 5 498 25.0M pkts/s 6.6K

BFP Hybrid 5 455 25.0M pkts/s 6.0K

SST Optimal Bound 5 386 25.0M pkts/s 5.1K

To more fully evaluate our algorithms for the IPv6 case,
we resort to synthetic IPv6 prefix sets, since there are no
large real-world IPv6 tables available yet. We adopt the
methodology developed in [13]. The authors observe that
while it is difficult to predict the structure of future large
scale IPv6 route lookup tables, it’s possible to use the IPv6
address allocation schemes and the characteristics of current
IPv4 tables to infer information that can be used to generate
realistic IPv6 tables. For evaluation, we generate an IPv6
table with about 200K prefixes using the method proposed
in [13]. The prefix length distribution of this table is shown
in Figure 9.

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

1 8 15 22 29 36 43 50 57 64
Prefix Length

of

 P
re

fix
es

0
100
200
300
400
500

16 18 20 22 24 26 28 30

Figure 9. Prefix Length Distribution for Synthetic IPv6
Table

All the prefixes in this table are for global unicast ad-
dresses, which start with the first three bits of “001”. The
prefix length also retains some statistical characteristics of
the IPv4 BGP table used in our earlier experiments, but
scaled to IPv6. For example, the ratio of the number of
even length prefixes to the number of odd length prefixes is
3 : 1. A large portion of the prefixes have length of 32, 48

and 64. This characteristic is also consistent with the IPv6
address allocation schemes and seems likely to hold true in
the future IPv6 route lookup tables. Each address prefix is
generated by starting with the three bit prefix 001, append-
ing a 13 bit random number, then appending an IPv4 prefix,
and finally appending some additional random bits whose
length is selected to produce the desired prefix length distri-
bution. The IPv4 prefixes were selected from the BGP table
used in our earlier experiment.

The simulation results on this synthetic route lookup ta-
ble are summarized in Table 4. The trie height for the BFP
hybrid algorithm is about half that for the tree bitmap al-
gorithm and the memory required is about 40% of that re-
quired by the tree bitmap algorithm. The pure BFP SST
algorithm is only slightly less efficient than the BFP hybrid
algorithm.

Table 4. Performance on the Synthetic IPv6 Table
Trie # of Worst Case Memory

Height Nodes Throughput (Bytes)

Underlying Trie 64 4,565,260 - -
Tree Bitmap 12 892,111 13.3M pkts/s 11.8M

BFP SST 7 345,222 20.0M pkts/s 4.55M

BFP Hybrid 6 344,742 22.2M pkts/s 4.54M

SST Optimal Bound 7 312,132 20.0M pkts/s 4.12M

With similar numbers of prefixes, the binary tries for
IPv6 route lookup tables are sparser than those for IPv4.
Comparing the simulation results for the IPv4 and IPv6
route lookup tables, we note that the BFP hybrid algorithm
makes a bigger difference in the space efficiency for the
IPv4 case, apparently due to the greater density in the un-
derlying trie.

For this scale of route lookup tables, we can finish 22.2
million route lookups per second. Assuming the worst case
IPv6 packet size to be 60 bytes, a single SRAM chip can
sustain 10.7Gbps link speed.

While the height of trie-based data structures with a fixed
stride length grows in proportion to the underlying binary
trie height, we find that the SST height increases only by
two as we go from IPv4 to IPv6. The number of memory ac-
cesses needed is actually comparable to the number of hash
table probes needed for the method described in scheme [5].
The method of [5] requires log2 n hash probes, where n is
the address length, which is 64 for IPv6.

8.3 Scaling Characteristics of SST

We performed some additional experiments to show how
the performance of SST improves as more bits are avail-
able for the per node bit maps. We used the synthetic IPv6
BGP table used in our earlier experiment and varied the to-
tal number of bits available for the bitmaps from 16 to 128.

The results are summarized in Figure 10. At most of the
data points, the SST algorithm shows substantial advantages
over the tree bitmap algorithm.

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

16 32 48 64 80 96 112 128

of Bits for Bitmaps

of

 T
ire

 N
od

es

4
6

8
10

12
14
16

18
20

22
24

16 32 48 64 80 96 112 128

of Bits for Bitmaps

Tr
ie

 H
ei

gh
t

Tree Bitmap
Tree Bitmap

BFP SST

BFP Hybrid

BFP SST

BFP Hybrid

Figure 10. Effects of the Bit Assignment

9 Updating an SST

Because an SST is essentially an encoding of a binary
trie, it is relatively easy to add and remove prefixes. Prefixes
that convert a non-prefix node in the underlying binary trie
to a prefix node are trivial to handle. It’s also easy to add
binary trie nodes to SSTs nodes that are not yet “full”. In
some cases, this may require restructuring an SST node, but
so long as this restructuring does not change the set of child
nodes of the SST node being restructured, it affects only the
one SST node. Adding new SST nodes is also straightfor-
ward, as is removing SST nodes that are no longer needed.

However, incremental modifications to an SST can re-
sult in poor performance. In particular, one can construct
a sequence of insertions and deletions that results in an
SST with nodes that all have depth log2 K . This can lead
to worst-case performance that is worse than that of the
tree bitmap algorithm. One can avoid this by restructur-
ing the SST occasionally, should the height exceed some
target bound. Determining the frequency with which such
restructuring should be done is left as a subject for future
study.

10 Related Work

IP route lookup is a well-studied problem. The algorith-
mic approaches organize the prefixes using some data struc-
ture and store them in memory. The lookup is conducted by
a series of memory accesses. The multibit trie is represen-
tative of this type of approach. An alternative approach is to
use a hardware-based search mechanism such as a Ternary
Content-Addressable Memory (TCAM). TCAMs can de-
liver a search result per clock tick, making them very fast,
but TCAM is also relatively expensive and consumes a great
deal of power (both cost and memory consumption are more
than times that of SRAM).

For trie-based IP lookup, some techniques have been de-
veloped to improve the lookup efficiency by exploiting the
structural characteristics of the prefix tree. The original bi-
nary trie can have long sequence of nodes with single chil-
dren. Path compression techniques [15] can be used to rep-
resent such long paths as a series of bits. The SST data
structure can be viewed as a generalization of this approach.

The multibit trie is the more common technique to ac-
celerate the IP route lookup speed. In this scheme, multiple
bits are inspected simultaneously, so that the throughput is
improved in proportion to the stride. One way to implement
it is through the prefix expansion: arbitrary prefix lengths
are transformed into an equivalent set with the prefix length
allowed by the new structure. Specifically, if the stride is S,
the prefix lengths that are not a multiple of S need to be ex-
panded to make the lengths equal to the nearest multiple of
S. The prefix expansion increases the memory consumption
if the fixed stride is used.

The multibit trie algorithm is generalized to enable dif-
ferent stride at each trie level. Given the IP route lookup
table and a desired number of memory accesses in the worst
case, the selection of the stride size is implemented by the
controlled prefix expansion [3]. A dynamic programming
algorithm is used to compute the optimal sequence of strides
that minimizes the storage requirements. The algorithm
is further improved by providing alternative dynamic pro-
gramming formulations for both fixed and variable-stride
tries [16]. The disadvantages of the controlled prefix ex-
pansion are two folds: the update is slow and lead to sub-
optimality; the hardware implementation is difficult due to
the variable trie node size. Moreover, the storage optimal-
ity is only under the worst case throughput constraints. The
prefix expansion tends to increase the memory consumption
anyway. For example, the memory usage of our data struc-
ture on the BGP table is roughly equal to the memory usage
of the multibit trie with the controlled prefix expansion on
the MaeEast table, when their worst-case tree heights are
both five [3]. However, the BGP table is about five times
larger than the MaeEast table. Clearly, our algorithm scales
with the route table size much better.

The breakthrough to enable fast hardware implementa-
tion and eliminate the prefix expansion requirement is the
tree bitmap algorithm [2]. The major idea also forms the
foundation of our work. A coding scheme is used to effec-
tively compress the node size and enable fast lookup. An-
other similar node coding scheme can be found in [17]: A
depth-1 trie numbering scheme is actually a combination of
the shape bitmap and the internal bitmap, while the external
bitmap is implied by the trie scanning order. However, the
major concern in that paper is to compress the trie represen-
tation. Though the data structure also supports multiple bit
search in one memory access, it only uses naive trie parti-
tion and does not provide an optimal trie in terms of either

height or size. Besides, the algorithm does not consider the
case when the compression actually turns out to be more
inefficient than the simple tree bitmap representation as ad-
dressed by our BFP hybrid algorithm.

In [18], the underlying binary trie is also partitioned
to build the FSMs using the hardware logics for IP route
lookups, where the partitioning is only aimed to reduce the
overall number of FSMs. We also find the similarity of
the SST construction problem with the technology mapping
problem in the reconfigurable logic technology.

Many algorithms have been proposed to optimize the
height and size of the partitions over the underlying binary
tree, separately or simultaneously [19, 20]. Actually, the
SST construction can be considered as a special and sim-
plest case of this problem, hence these algorithms can be
applied to our problem with corresponding modifications.
Likewise, the BFP and POP algorithms, which are simple
and optimal in terms of trie height or size, can also be used
in technology mapping scenarios.

11 Conclusion

In this paper, we have presented a novel data structure,
the shape shifting trie and an IP lookup algorithm that uses
it. The algorithm outperforms the well-known and highly
successful tree bitmap algorithm, and can be used in high
performance routers to perform IP route lookup at even
higher line speed. The algorithm also scales well to the
fast growing route lookup table and is especially attractive
for the IPv6 route lookups, since it is designed to exploit
the intrinsic sparsity of the IPv6 prefix tree. We show how
to structure SSTs to achieve minimum size and height (al-
though not simultaneously). We also describe a hybrid al-
gorithm that combines elements of the tree bitmap and SST
approaches.

We show that using a single QDRII SRAM chip, an SST-
based route lookup system can achieve wire-speed process-
ing of IPv4 and IPv6 packets at OC192 link rates. Higher
throughput can be obtained by increasing the memory band-
width further. One way to accomplish this is to replicate the
lookup data structure in multiple SRAM chips. This allows
performance to scale to OC768 rates while still maintaining
reasonably low cost.

References

[1] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small
Forwarding Tables for Fast Routing Lookups,” in Proceed-
ings of ACM SIGCOMM, 1997.

[2] W. Eatherton, “Fast IP Lookup Using Tree Bitmap,” Wash-
ington University Master Thesis, 1999.

[3] V. Srinivasan and G. Varghese, “Fast Address Lookups using
Controlled Prefix Expansion,” ACM Transaction on Com-
puter Systems, vol. 17, Feb. 1999.

[4] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups
Using Multiway and Multicolumn Search,” IEEE/ACM
Transactions on Networking, vol. 7, June 1999.

[5] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scal-
able High Speed IP Routing Lookups,” in Proceedings of
SIGCOMM, 1997.

[6] F. Baboescu and G. Varghese, “Scalable Packet Classifica-
tion,” in ACM Sigcomm, San Diego, CA, Aug. 2001.

[7] J. Lunteren and T. Engbersen, “Fast and Scalable Packet
Classification,” IEEE Journal on Selected Areas in Commu-
nications, vol. 21, May 2003.

[8] D. Taylor and J. Turner, “Scalable Packet Classification Us-
ing Distributed Crossproducting of Field Labels,” in Pro-
ceedings of IEEE Infocom, July 2005.

[9] G. Jacobson, “Succinct Static Data Structure,” Carnegie
Mellon University Ph.D Thesis, 1988.

[10] D. Taylor, J. Lockwood, T. Sproull, J. Turner, and D. Par-
lour, “Scalable IP Lookup for Programmable Routers,” in
Proceedings of IEEE Infocom, June 2002.

[11] “BGP Reports,” in http://bgp.potaroo.net/.

[12] “IPv6 Address Allocation and Assignment Policy (AP-
NIC),” in http://www.apnic.net/docs/policy/ipv6-address-
policy.html.

[13] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-Random
Generator for IPv6 Tables,” in 12th Annual IEEE Sympo-
sium on High Performance Interconnects, Stanford Univer-
sity, CA, Aug. 2004.

[14] H. Liu, “Routing Table Compaction in Ternary CAM,” IEEE
Micro, vol. 22, Jan. 2002.

[15] K. Sklower, “A Tree-based Routing Table for Berkeley
Unix,” in Winter Usenix Conference, Dallas, TX, 1991.

[16] S. Sahni and K. S. Kim, “Efficient Construction of Multibit
Tries for IP Lookup,” IEEE/ACM Transactions on Network-
ing, vol. 11, Aug. 2003.

[17] H. H.-Y. Tzeng, “Longest Prefix Search Using Compressed
Trees,” in Proceedings of IEEE Global Communication Con-
ference, July 1998.

[18] M. Desai, R. Gupta, A. Karandikar, K. Saxena, and
V. Samant, “Reconfigurable Finite-State Machine Based IP
Lookup Engine for High-Speed Router,” IEEE Journal on
Selected Areas in Communications, vol. 21, May 2003.

[19] R. J. Francis, J. Rose, and K. Chung, “Chortle: A Technol-
ogy Mapping Program for Lookup Table-based Field Pro-
grammable Gate Arrays,” in 27th Annual ACM/IEEE Con-
ference on Design Automation, 1991.

[20] J. Cong and Y. Ding, “FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimaization in Lookup-
Table Based FPGA Designs,” in Proceedings of the IEEE
International Conference on Computer-Aided Design, Nov.
1992.

