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Abstract

This paper focuses on understanding the scale and the
distribution of “state overhead” (briefly load) that is in-
curred on the routers by various value-added network ser-
vices, e.g., IP multicast and IP traceback. This understand-
ing is essential to developing appropriate mechanisms and
provisioning resources so that the Internet can support such
value-added services in an efficient and scalable manner.
We mainly consider the number of end-to-end paths or trees
intersecting at a router to represent the amount of state
overhead at that router. Hence, we analyze the router-level
intersection characteristics of end-to-end Internet paths or
trees to approximate the state overhead distribution in the
Internet. For the reliability of our analysis, a representative,
end-to-end router-level Internet map is essential. Although
several maps are available, they are at best insufficient for
our analysis. Therefore, in the first part of our work, we
exert a measurement study to obtain a large size end-to-end
router-level map conforming to our constraints. In the sec-
ond part, we conduct various experiments using our map
and shed some light on the scale and distribution of state
overhead of value-added Internet services in both unicast
and multicast environments.

1 Introduction
In this paper, we study the router-level intersection char-

acteristics of the Internet paths and trees. We use these char-
acteristics to better understand the scale and the place of
“state overhead” that is incurred on the routers by value-
added network services, e.g., IP multicast [4], IP trace-
back [24, 26, 32, 34], p2cast [23], SIFF [33, 35], IntServ [9],
and Diffserv [7]. More specifically, we are seeking an-
swers to various questions: “Does the overhead follow any
known distribution?”, “How is the overhead distributed at
the backbone?”, “Is there any relation between the overhead
incurred on and the location (e.g., edge, border, backbone,
etc.) of the routers in the network?”

Answering these questions is essential to developing ap-
propriate mechanisms and provisioning resources so that
the Internet can support aforementioned value-added ser-
vices in an efficient and scalable manner. Using the ob-
served characteristics in this study, we shed some light on

various issues related to the deployment, operation, man-
agement, and performance of value-added services. For
example, how effective and scalable the existing state-
reduction techniques are in reducing multicast forwarding
state overhead in the routers? Where are the main choke
points in terms of state accumulation for a given value-
added service?

Starting from early 1990s, several value-added services
have been proposed or introduced into the Internet. These
include IP multicast [4]; packet marking and/or logging for
IP traceback [24, 26, 32, 34]; recent proposals on receiver-
controlled communication services such as p2cast [23] and
SIFF [33, 35]; and IP-based QoS support such as IntServ [9]
and Diffserv [7].

One common characteristic of these services is that they
incur state and/or processing overhead that we briefly call
“load” on the routers in the underlying paths or trees. For
example, IP multicast, IntServ, and p2cast require to es-
tablish connections along the underlying end-to-end paths,
resulting in state overhead on the routers in these paths.
In this context, multiple simultaneous connections between
the same end systems can be reduced to one by using end-
to-end tunnels [13]. This simply allows us to use the num-
ber of end-to-end paths (or trees) crossing over a router as
the state overhead (load) on that router. For DiffServ, we
can consider the number of paths intersecting at the edge
routers since DiffServ requires to maintain state informa-
tion at the edge. From the foregoing discussion, we mainly
consider the number of end-to-end paths intersecting at a
router as the “load” on that router, and thus analyze it under
various cases.

One of the key challenges in analyzing intersection char-
acteristics of the Internet paths and trees is how to obtain
a representative, end-to-end router-level Internet map. The
research community has been extensively investigating var-
ious other characteristics of the Internet through measure-
ments; thus, various maps have been collected. However,
as we discuss later in detail, these maps were at best in-
sufficient for our analysis since they were not either end-to-
end, or router-level, or large enough. Therefore, one of the
major tasks in our study was the collection and processing
of the desired topology data as well as verifying the rep-
resentativeness of the collected topology. At this end, we
first conducted a relatively large-scale traceroute measure-
ment among 153 end points located in North America and



obtained a router-level topology. We discuss the details of
our measurement efforts and justify the representativeness
of our topology in Section 3.

Using the topology map, we run various experiments to
determine router-level intersection characteristics of end-to-
end Internet paths (for unicast connections) and trees (for
multicast connections). According to the experiments, the
load distribution on routers follow a heavy tailed distribu-
tion where a small number of routers experience heavy load
while a large number of routers experience lighter load. For
unicast applications, the heavily loaded routers are back-
bone routers. In sparse mode multicast applications, most
of the load accumulates at backbone routers. As multicast
groups get denser, the overhead on exchange point routers
reaches to that of backbone routers. Finally, our exper-
iments show that the previously proposed approaches on
multicast state reduction are not effective in reducing the
number of forwarding states at heavily loaded branching
routers, which, most of the time, correspond to border and
exchange point routers. We present the details of our anal-
ysis in Sections 4 and 5.

In summary, the contributions of this paper are twofold:
(1) the collection, processing and validation of a router-level
topology map, and (2) experimental study on the intersec-
tion characteristics of end-to-end Internet paths and trees.
Accordingly, after presenting related work in Section 2, we
divide the paper into two parts. In the first part (Section 3),
we describe our data collection, processing, and verification
efforts. In the second part (Sections 4 and 5), we explain
our experiments and results in the context of multicast and
unicast scenarios, respectively. Finally, we conclude this
paper and give directions for future research in Section 6.

2 Related Work
2.1 Router-Level Internet Measurements

There has been a large body of work related to Inter-
net topology measurements. Earlier work examined routing
and end-to-end path characteristics (including loss and jit-
ter characteristics) of the Internet [11, 17, 18, 19, 21]. More
recently, researchers have studied the connectivity charac-
teristics of the Internet topology. One interesting recent
finding was that the degree distribution of the nodes in the
Internet follows a heavy tailed distribution. In their land-
mark work [25], Faloutsos et al. used Autonomous Systems
(AS) and router level Internet topologies to show that power
laws can be used to characterize the degree distribution of
the nodes in the Internet. Later on, Broido and Claffy [10]
used around 220M traceroute data (collected by the Skitter
tool that we discuss in the next section) to construct a router-
level Internet map and used that map to study the connectiv-
ity characteristics of the Internet. They showed that Weibull
distribution can be used to approximate the outdegree dis-
tribution of the routers.

The observations in [25] have generated a significant de-
bate on whether the node degree distribution can be mod-
eled by power laws or not. During this debate, researchers
questioned many aspects of the methodology that is cur-
rently used in Internet measurements studies: some pointed
out the marginal utility of using additional vantage points
in topology collection [6]; some discussed the difficulties

of inferring the topological attributes from the collected
data [5, 36]; some pointed out the potential of sampling
biases in topology collection [15]; and some questioned
the validity of using degree distribution as the only (or the
main) metric to characterize the Internet topology [16].

2.2 Value-added Services
IP Multicast
IP multicast [4] is one of the first value-added network ser-
vices that is developed and partially deployed in the Inter-
net. In IP multicast, source data propagates on a multicast
distribution tree toward the receivers. Each router on a mul-
ticast tree maintains group specific forwarding state. As the
number of multicast groups increase, the state overhead in
the network increases. To reduce this overhead, researchers
have proposed several state-reduction approaches that can
be divided into two groups: (1) state aggregation and (2)
tunneling approaches.

The main idea in state aggregation is to combine mul-
tiple multicast forwarding state entries into one single en-
try [29, 22]. Tunneling proposals, on the other hand, focus
on reducing the number of multicast states by using unicast-
or multicast-based tunnels [13, 8, 28, 30].

Although much work has been done on state-reduction
techniques, little has been done on understanding the char-
acteristics of multicast state overhead or evaluating the ef-
fectiveness of the proposed state-reduction techniques un-
der realistic settings. In this end, Wong and Katz conducted
an experimental study to analyze the nature of the multicast
state scalability problem in [31]. By using several AS level
Internet maps, a snapshot of Multicast Backbone (MBone),
and a set of synthetic router level topologies, they provided
a comprehensive analysis of state scalability problem and
demonstrated the effects of (1) ISP peering relationships
and (2) application and session characteristics on the distri-
bution of multicast states on the routers. They also observed
a power law relation between the growth of multicast states
and the receiver size in the session. Finally, they studied the
effect of non-branching state elimination on state scalability
problem. They showed that non-branching state elimination
helps reduce the state load considerably.
Unicast
In addition to IP multicast, several value-added network ser-
vices have been proposed for unicast environments [7, 9,
23, 24, 26, 35, 33]. Researchers have informally discussed
the scalability problems associated with these unicast value-
added services. However, to the best of our knowledge,
there is no work that experimentally evaluates the load in-
curred by value-added unicast services. In this end, our
analysis in Section 5 seem to be the first.

3 Data Set
In this section we first describe our methodology in

collecting and processing a new router-level Internet map,
which is essential to our analysis. We then discuss the rep-
resentativeness of our map in the light of the recently pro-
posed sampling bias test [15]. We also offer some insight
into the effectiveness of this test in finding sampling biases.

3.1 Data Collection
In order to study the router-level state and processing

overhead distribution of value-added services, it is deemed



necessary to use a realistic Internet map that should have
the following properties:
� Vantage points should be end points (or close to end
points) in the Internet. This is so that the analysis repre-
sents the end-to-end load distribution characteristics.
� The map should include the path information among all
vantage points as much as possible. Topology maps are of-
ten obtained based on traces from a single vantage point to
a large number of subnet prefixes. Naturally, the resultant
maps become a tree-oriented topology. Such a topology is
not sufficient for our analysis because it excludes significant
amount of path information (path traces) among all the end
points (leaves of the underlying trees).
� The map should include path traces in both directions be-
tween two end points and should not use path symmetry
assumption [20].
� The vantage points should be carefully selected so as to
avoid any topological imbalance that may cause bias during
our experiments. As an example, having a single vantage
point in, say, Japan or Australia along with a large num-
ber of vantage points in North America may result in heavy
load accumulation on the routers toward this remote vantage
point. This may introduce potential bias for our experiment
results, and, hence, should be avoided.

Having stated the properties that we want to have in our
Internet map, we can now look at the available Internet
maps and discuss why they are insufficient for our analy-
sis. There have been several topologies collected and used
in other measurement studies. For example, Pansiot and
Grad collected end-to-end routes in order to construct rep-
resentative multicast tree topologies [19]. Their data set in-
cludes 11 Internet-wide tree topologies which are collected
by running traceroutes from these 11 vantage points to over
5000 subnets on the Internet. Due to its tree nature, this
data set is not suitable for our analysis. Paxson collected
end-to-end path information among 37 vantage points and
used this data set to study end-to-end routing behavior in
the Internet [20]. Paxson’s data set is suitable for our study
but is of limited size. Finally, Spring et al. used tracer-
oute queries from 750 publicly available traceroute vantage
points [27] most of which are not end points. These traces
aim at discovering internal topologies of ISP networks and
are not necessarily complete end-to-end traces. Therefore,
they are of limited use for our purposes.

In addition to the above studies, there are three well-
known collaborative efforts that provide Internet measure-
ments support in large scale. They are Skitter [18] project
of CAIDA, PlanetLab [3], and Active Measurement Project
(AMP) [17] of NLANR. Skitter has 30 publicly available
monitors that provide traffic measurements services for re-
searchers. PlanetLab is a Internet-wide measurement test
bed that has around 170 monitors at 70 different locations
world wide at the time of our data collection (late 2004).
AMP has 150 measurement monitors most of which are de-
ployed in the United States. AMP monitors provide the in-
frastructure to take site-to-site measurements on high-speed
research networks for monitoring and/or debugging pur-
poses for the networking community.
Our Data Set
To obtain a representative end-to-end router-level Inter-
net map having the aforementioned properties, we sig-

nificantly benefit from the resources of the above projects.
Specifically, the vantage points that we use in our work
include 120 measurements sites used by AMP project
of NLANR and 33 traceroute servers that are listed at
www.traceroute.orgweb site. We observed that most
of our vantage points are located at universities or research
institution in North America and most of them are con-
nected to Internet2. We also observed a significant over-
lap between our vantage points and the active measurement
sites of the PlanetLab.

While choosing the vantage points, we paid attention to
choose the sites located at the periphery of the network.
For this, we first used ipas tool [2] to map IP addresses
of the vantage points to their AS numbers. Then, by con-
sulting an AS level Internet map from [31], we classified
these ASes as stub ASes and others. Most of the result-
ing candidate vantage points were located in North Amer-
ica and there were several others from Europe and Far East.
Given the significant difference in the number of vantage
points in North America and other parts of the world, we
decided to use the vantage points located in North America
only. At the end of this process, we were left with 153 van-
tage points that are located at stub ASes in North America.
Finally, we used traceroute tool and collected end-to-end
paths (153*152 traces) between all vantage points. After
eliminating incomplete path traces and paths with loops, we
had 19,739 path traces in our data set, based on which our
topology is formed as discussed next.

3.2 Data Processing

After collecting the end-to-end paths, the next step is to
process the data set to build an Internet map. This task in-
volves two steps: (1) alias resolution for the routers that
have multiple IP addresses and (2) resolving the identities
of the unresponsive routers, i.e., routers causing traceroute
program to print a ‘*’ during the trace.
Alias Resolution
The first step in data processing is to resolve IP aliases of
the routers. A router may respond to different traceroute
queries with different interface IP addresses. This results
in a situation where traceroute returns a list of interface IP
addresses but does not group these interfaces into routers.
Alias resolution refers to the process of checking if two (or
more) given IP addresses belong to the same router.

Currently, there are two well-known IP alias resolution
tools: mercator [14] and ally [1]. Mercator resolves aliases
by using source IP addresses of ICMP PORT UNREACH-
ABLE responses. Mercator sends an ICMP probe to each of
the two IP addresses that are in question. If two probes with
two different IP addresses result in ICMP responses with the
same source IP address, then these two probed IP addresses
are assumed to be aliases for the same router. Ally extends
mercator by including a second step where it checks the
IP identifier field values in the IP protocol header of the
returning ICMP response messages. The intuition in this
approach is that even if the ICMP responses for two alias
probes have different source IP addresses, they can still be-
long to the same router if they have close IP identifier val-
ues. Given two IP addresses, ally tool returns three possible
answers: “alias”, “not alias”, or “unknown” followed with
an explanation. “Unknown” is returned when at least one of



the probes does not result in a response. This can happen as
some ISPs configure their routers to ignore probes directed
to themselves.

Since ally is an improvement over mercator, we used
ally to resolve IP aliases in our data set. Using ally, we
detected 1536 IP alias pairs corresponding to 435 unique
routers. The maximum number of aliases that a router has
in our data set is 23. On the other hand, 79% of IP ad-
dresses (around 5900 addresses) did not have any alias. At
first look, this result suggests that 5900 IP addresses repre-
sent 5900 different routers in our data set. But, after care-
fully studying the output of ally probes, we noticed that ally
probes to 3122 (out of 7073) IP addresses did not return
any response. This suggests that some of the IP addresses
among 5900 addresses may correspond to the same router.
However, the current state-of-the-art techniques in alias res-
olution cannot help us find them.
Resolving Unresponsive Routers
The second step is to identify unresponsive routers causing
traceroute to display ‘*’s during the trace. This task is im-
portant because more than half of the traces contain at least
one ‘*’ corresponding to an unresponsive router. Routers
that are configured not to respond TTL expiration event
cause traceroute to display ‘*’ in its output. Note that the
simplistic approach that assigns a unique IP address to each
unresponsive router would not be suitable as some of these
unresponsive routers may in fact be the same router.

To resolve unresponsive routers in different traces, we
compare all path pairs (say �� and ��) with unresponsive
routers and give them the same IP address as follows:

� Suppose �� and �� contain one ‘*’ between two known
routers. If the corresponding ‘*’ entries have the same
upstream router and the same downstream router while
both �� and �� have the same final destination, then we
consider such unresponsive routers as the same router
and assign a unique name, e.g., ur.1, to it. This case is
illustrated in Figure 1(a). Since the A-to-D and B-to-
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Figure 1. Resolving unresponsive routers.

D traces include an unresponsive router which has the
same upstream router x, the same downstream router
y, and the same destination D, we assign ur.1 to it.

� Suppose �� and �� contains two consecutive ‘*’s be-
tween two known routers. Similar to previous proce-
dure, we first cluster these routers and give the same
name to routers in the same cluster if the cluster has
the same upstream, the same downstream routers, and
the same destination, as illustrated in Figure 1(b).

� Discard traces having more than two consecutive ‘*’s.

This way, we mapped 2748 unresponsive routers (i.e., 2748
occurrences of ‘*’s) to 406 distinct routers. Finally, we
obtained our router-level map with 6,058 unique nodes,
13,873 links and 19,739 paths. Compared to topologies
that have been collected by using (k,m)-traceroute queries
(k�m), we expect our (n,n)-traceroute based topology to
be more suitable for studying the end-to-end path intersec-
tion characteristics.

3.3 Representativeness of Our Data Set
Qualitatively speaking, it is clear that as the sample size

increases, the collected data (our map) will be more and
more representative for the sample space (the Internet).
With this in mind, we conducted our measurement study.
We believe that we maximally utilized the resources pub-
licly available to us and obtained a large size end-to-end
router-level map conforming to our constraints as outlined
in Section 3.1.

Having said that, we now look at some quantitative ev-
idence by comparing the similarities between the topologi-
cal characteristics of our data set and that of those in other
recent Internet topology measurement studies. We mainly
consider the degree distribution characteristics from [25]
and sampling bias issue from [15].
Power Law Conformance Test
In [25], Faloutsos et al. showed that several characteristics
of the Internet topology follow a power law distribution. In
our work, we analyzed the degree distribution (power law
1) and degree rank distribution (power law 2) characteris-
tics of our topology map. For the first power law, we found
the rank exponent to be -0.48 and for the second power law
we found the outdegree exponent to be -2.3. Both figures
are consistent with the rank exponents suggested for the In-
ternet.
Sampling Bias Test
We also checked for potential sampling bias in our topology
in the light of the previously mentioned work by Lakhina
et al. [15]. The main idea in [15] is that the degree of a
router should be independent of the distance (or hop count
�) from the vantage point (i.e., traceroute source) to the
router. Therefore, if the measurement procedure used in
collecting a topology map is not biased, the statistical distri-
bution of node degrees should not change with the distance
� from the vantage point. To test for sampling bias, the pa-
per first divides the set of routers V in the collected topol-
ogy into two subsets, namely N (Near Set) and F (Far Set).
While N includes the nodes closer to the vantage point than
the median distance, F includes the nodes that are at least
the median distance to the vantage point. The paper then
concludes that there exist sampling biases if the following
two tests are positive.

� C1: check if the 1% highest-degree vertices tend to
appear mostly in N rather than in F.

� C2: check if the degree distribution of the routers in N
(or F) is different than that of all routers in V.

According to these tests, our topology seems to present
sampling bias. For example, we considered the degree dis-
tribution by hop distance from the vantage point(s). As we
see in Figure 2-a, the closer the routers to vantage points,
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Figure 2. Degree distribution where h is the
minimum distance to a vantage point.

the higher the degree distribution. In other words, routers
with small � values have larger values on the y-axis when
having the same value on the x-axis, especially for high de-
grees on the x-axis. This results in a confirmative answer
to the first sampling bias test (C1), which questions if the
highest-degree nodes tend to be near the vantage point(s) or
not. For the second sampling bias test, we determined the
degree distributions for N, F, and V. As seen in Figure 2-b,
the routers in N (or F) have different distribution than those
in V. Specifically, they can be ordered based on their sets as
Near Set�All�Far Set, again suggesting that our topology
shows sampling bias.

Actually these findings were somewhat surprising to us
because our intuition suggests that a topology based on the
(n,n)-traceroute approach should properly represent the de-
gree distribution characteristics of the underlying network
topology. We now present some explanations for the sam-
pling bias suggested by C1 and C2 while also questioning
the validity of such tests.

Comments on Sampling Biases
At this point, without knowing the underlying network
topology, it is difficult to comment on the (lack of) represen-
tativeness of our topology. But at least, we can comment on
the results of the sampling bias tests as follows. We claim
that the differences between our expectations and the test
results are mainly due to two reasons: (1) imperfect IP alias

resolution and (2) the procedure used to choose “hop count”
(�) values for the routers during the sampling bias tests.

We suspect that the observed difference in the degree dis-
tribution of the routers in Near Set and in Far Set is partly
due to imperfect IP alias resolution. As we mentioned pre-
viously, about 44% of the routers in our topology did not re-
spond to ally queries which might have caused some of the
aliases to remain undiscovered. The likely consequence of
this limitation can be explained as below. Consider a router
R (see Figure 3) that is in the Near Set with respect to a van-
tage point V�. Assume that R responds traceroute queries

V1 V2

(a)  (1,m)−traceroute from vantage point V 1

(b) (1,m)−traceroute from vantage point V 2

: Interfaces whose IP addresses are returned as a response to traceroute query
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Figure 3. Effect of alias resolution on per-
ceived sampling bias.

from V� with its IP address IP�
�

. Assume that the outdegree
of R in the tree topology with respect to V� is X�1. That is
R is a major branching point in the tree topology rooted at
V� and outdegree of IP�

�
is X. Now, assume that the same

router R appears in the Far Set with respect to another tree
topology rooted at a vantage point V�. Based on the obser-
vations in [12], the outdegree of R in this tree topology will
likely be small, say it is 1, assuming that traceroute query
from V� causes R to send a response with its IP address IP�

�
.

At this point, we have R that appears in two different trees
and in one it appears in Near Set with its address IP�

�
and

with an outdegree of X. In the other tree, it appears in Far
Set with its address IP�

�
and with an outdegree of 1. Now, if

we cannot resolve the IP addresses for R and cannot detect
that IP�

�
and IP�

�
in fact belong to the same router R, in our

topology we will have two different nodes, one (IP�
�

) in the
final Near Set with a high outdegree and the other (IP�

�
) in

Far Set with a low outdegree (see Figure 3). But, in fact,
these IP addresses belong to the same node and according
to the procedure the node should only exist in the Near Set
in the final topology. This discrepancy is not because of
the potential bias in the sampling but rather because of the
failure of the IP alias resolution. This observation also sug-
gests that no matter how the topology sampling is done, due
to the failure in IP alias resolution, the resulting topology
will always look like it is biased. Hence, this deteriorates
the validity of the sampling bias tests unless a perfect IP
alias resolution can be achieved on the data.



In order to verify our claim, we generated a 10,000 node
transit-stub network (1,000 nodes being transit nodes and
9,000 being stub nodes) using Georgia Tech Internet Topol-
ogy Modeler (GT-ITM). We extracted a subtopology by col-
lecting end-to-end shortest paths between 150 stub nodes
from the main topology. This subtopology represents an
(n,n)-traceroute based topology with no IP alias resolution
problems. Using this subtopology, we looked at the degree
distribution of the nodes in Near Set and Far Set. As we
show in Figure 4, the degree distributions in Near Set has
smaller CCDF values. As a result, this experiment suggests

Router degree distribution
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that Internet topologies that are collected by using (n,n)-
traceroutes are likely to be free from sampling bias.

Our second observation is related to the way the hop
count value � is computed for each router in the final topol-
ogy. According to [15], if a router appears on topology
trees of multiple vantage points, the � value is chosen to be
the hop distance of the router to the closest vantage point.
Since our topology consists of data generated by (n,n)-
traceroutes, a significant majority of the routers appear on
the topology trees collected by several different vantage
points. As an example, (3, 5, 5, 5, 5, 5, 5, 10, 11) represents
the distances of a router in our topology to nine different
vantage points. According to the above procedure, for this
router we choose �=3 as the hop count to the vantage points
and perform sampling bias tests. In this case, we feel that
choosing � as the minimum distance to a vantage point may
introduce bias within the methodology by itself and shows a
router closer to the periphery of the network than its actual
location. As an alternative approach, we tried the median
hop count to set � (�=5 in the above example) and ran the
tests. In this case, the distribution of the node degrees in
Near and Far Sets is similar, as seen in Figure 5-b. In addi-
tion, Figure 5-a shows that the outdegree distribution of the
routers is random at different hop counts, i.e., there is not a
strong order in the form of �=2��=3��=4�. . .

These observations may not necessarily give us a
definitive answer on the existence or the lack of sampling
biases in our topology. But at least they experimentally
show that (n,n)-traceroute based topologies that do not
have IP alias resolution problems are likely to be free from
sampling bias. In addition, the discussion in this section
points out the limitations of the procedure used for check-
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Figure 5. Degree distribution where h is the
median distance to a vantage point.

ing sampling bias and helps us realize the importance of IP
alias resolution in Internet measurement studies.

4 Load Distribution in Multicast Context
In this section, we present our analysis on multicast state

scalability problem at the router level. We first investi-
gate the effects of two important parameters, namely usage
rate and session density, on multicast state distribution in
the network1. By considering scenarios with different us-
age rates and different session density values, we examine
state distribution characteristics under various cases. We
also examine state distribution at backbone and exchange
point routers as they constitute potential scalability bottle-
neck points. Finally, we revisit the effectiveness of multi-
cast state elimination approaches that focus on improving
multicast state scalability. In this end, our analysis extends
the previous work by Wong and Katz [31] who studied the
problem mainly at the AS level.

4.1 Effect of Usage Rate and Session Density
In this set of experiments, we use different combinations

of session density (trees with 2, 15, and 50 receivers) and
usage rate (2, 5, 10, 15, and 50 trees) levels. In each exper-
iment, we form multicast trees by choosing the sources and

1Usage rate refers to the number of multicast groups in the network and
session density refers to the number of receivers in a multicast group.



receivers according to usage rate and session density val-
ues respectively. Then, for each experiment, we count the
number of states at backbone and exchange point routers.
We ran several experiments for each session density and us-
age rate case. The results of the experiments are shown in
Tables 1 and 2 as the average overhead for each experiment.

According to the first rows (2 receiver tree case) in Ta-
bles 1 and 2, at low session densities, the backbone routers
have relatively more load than the exchange point routers
especially at high usage rates. On the other hand, as ses-
sion density increases, the load at exchange point routers
get closer to the load at the backbone routers (see the third
rows in Tables 1 and 2).

Usage Rate (Num Trees)

Session Density 2 5 10 15 50
2 Receiver Trees 0.36 1.27 2.28 3.18 10.32
15 Receiver Trees 1.27 2.90 6.68 8.90 27.86
50 Receiver Trees 1.64 3.82 8.41 11.90 35.73

Table 1. Average load at backbone routers
(w.r.t. usage rate)

Usage Rate (Num Trees)

Session Density 2 5 10 15 50
2 Receiver Trees 0.33 1.00 0.92 1.83 6.58
15 Receiver Trees 1.00 1.83 4.34 5.83 15.00
50 Receiver Trees 1.50 3.33 7.33 11.16 32.75

Table 2. Average load at exchange point
routers (w.r.t. usage rate)

We believe that this behavior is an expected behavior.
That is, at low session densities, the first receiver will in-
cur state on at most two exchange point routers. This hap-
pens when the path from receiver to sender crosses over
the backbone. The additional receivers will then incur state
on at most one exchange point router (assuming a single
backbone domain). On the other hand, these receivers may
incur state overhead on more than one backbone routers.
Therefore, at low session densities, the backbone routers
are likely to get more states than the exchange point routers.
While we increase the session density, the probability that
each exchange point leading toward a receiver (or a multi-
cast sender) will increase, and, therefore, most of the ex-
change points will incur state overhead for many multicast
trees. On the other hand, since it is a low probability for
a backbone router to be on all end-to-end paths, the load
on backbone routers will be limited. As we increase the
usage rate and session density levels to 50%, the average
load on exchange point routers exceed the average load on
backbone routers (results not shown).

Another observation from the analysis is that multicast
usage rate seems to be a more effective parameter for state
scalability at backbone and exchange point routers. Accord-
ing to Table 1, as we increase the usage rate from 2 trees

to 50 trees at a session density of 2-receiver trees (the first
row of the table), the average state overhead at backbone
routers increases from 0.36 to 10.32. On the other hand, if
we fix the usage rate at 2 trees and increase session density
from 2 receiver trees to 50 receiver trees (the first column
of the table), the average state overhead at backbone routers
increases from 0.36 to 1.64. Since the increase in the first
case is more, we conclude that usage rate is a more effective
parameter for state scalability at backbone routers. A simi-
lar conclusion can be reached for exchange point routers in
the same way by using Table 2.

4.2 Multicast State Elimination - Revisited
We now consider the effectiveness of multicast state

elimination approaches. In general, researchers evaluate the
effectiveness of state elimination approaches by looking at
the number/ratio of non-branching states that are eliminated
from the network. The work in [31] studies the state elim-
ination on per-node resolution on AS level Internet maps
and concludes that except for a negligible number of nodes,
state elimination techniques are effective in reducing the
number of states by removing the non-branching states from
the nodes at the AS level.

In our work, we look at the effectiveness of state elim-
ination approaches on a router level Internet map. For our
evaluations, we consider several scenarios by choosing dif-
ferent number of multicast usage rates (i.e., 10, 25, and 50
trees) and session densities (i.e., 10, 25, and 50 receivers per
tree). After constructing multicast trees, we count both the
total number of states (both branching and non-branching
states) and the number of branching states on each router
in our network. Figure 6 presents the ratio of branching
states on 50 most loaded routers (most loaded with respect
to total number of states). According to the figure, we
see that in each experimental scenario there are a number
of routers whose branching ratio is significantly high. In
other words, most of the states these routers are maintaining
are branching states and non-branching state elimination
techniques cannot help reduce the state overhead on these
routers much. After a close look at the results, we observe
that most of these routers are backbone or exchange point
routers in our data set. This observation suggests that, con-
trary to previous conclusions, state elimination approaches
are not necessarily effective in removing multicast states
at bottleneck routers (e.g., backbone and exchange point
routers). Since such bottleneck routers are potential per-
formance choke points, eliminating non-branching states at
other routers will not likely provide a practical solution to
state scalability problem.

5 Load Distribution in Unicast Context
In this section, we study the worst-case load distribution

characteristics of value added unicast services. Due to space
limitation, average case analysis requiring to consider dif-
ferent load patterns is left as a future work.

For the worst-case analysis, we consider all unicast paths
(19,739 paths) among end points in our data set, and count
the number of end-to-end paths passing over a router as the
load (i.e., state overhead) incurred on that router. Figure
7-a presents the worst-case load distribution in a decreas-
ing order (i.e., rank distribution) in log-log scale. In addi-
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Figure 7. Worst-case load distribution.

tion, Figure 7-b presents the frequency distribution of the
load. These figures show that a small number of routers
have large numbers of paths passing over them and remain-
ing significant majority of the routers appear on smaller
number of paths. More specifically, there are 7 routers in
the range [2503-6095], i.e., the router that is loaded high-
est appears on 6095 paths and 7th highest loaded router ap-
pears on 2503 paths. According to our data set, all of these
routers belong to Abilene backbone which corresponds to
a significant portion of the backbone network in our data
set. Then, we list 10 routers in [2503-879] range and these
routers are mostly exchange point routers. Finally, 6,000+
routers fall in the range [879-1].

In the second step of our analysis, we take a closer look
at the load distribution on the routers as we go from the

periphery of the network toward the core. We again con-
sider all end-to-end paths corresponding to the worst case
scenario. Due to the heterogeneity in path lengths in our
data set and the difficulties in mapping routers to a precise
location in one dimension, we calculate the load distribu-
tion after normalizing the path lengths as follows. First we
create a histogram with 10 buckets2. For each router on an
end-to-end path, we use the location � of the router and the
path length ������� to compute the ratio ���������. Since
a router may appear on multiple end-to-end paths, we use
the median (���������) ratio to identify a bucket that this
router maps to in our histogram as

	
���� � �
����������
�

�������
� � ���� (1)

Then, we increment the load corresponding to this bucket
by the amount of the load at this particular router and repeat
the procedure for each router in our topology. At the end,
the overall load is distributed in a one-dimensional space
where the buckets at the two edges of the histogram cor-
respond to the periphery of the network and the buckets at
the center of the histogram correspond to the core of the
network.

Figure 8-a shows the cumulative load distribution at each
bucket. By ignoring information loss due to the normal-
ization, this figure shows that most of the load is accumu-
lated at the backbone (i.e., buckets around the center of the
x-axis) at buckets 5 and 6. Then, the bucket correspond-
ing to the edge of the network (i.e., buckets 1) bears high
load. Figure 8-b shows the average load distribution at each
bucket. Average load is defined as the ratio of the cumula-
tive load on a bucket divided by the number of routers cor-
responding to that bucket. According to this figure, the av-
erage load at backbone routers is significantly less than that
of edge routers. This result is surprisingly different than the
cumulative load distribution. One possible explanation of
this outcome is that not all routers that map to the buck-
ets at the middle of the histogram are highly loaded routers.
As we have seen in Figure 7, some of the highly loaded in-
dividual routers are backbone and exchange point routers.
However, not all backbone routers in our data set are highly
loaded. Please note that this may not necessarily reflect the

2We tried histograms with different number of buckets including 10-,
20-, and 30-bucket histograms and 10-bucket histogram seems to provide
a good representation of the load distribution.
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Figure 8. Histogram based load distribution.

actual load on such routers in the Internet but rather indi-
cates the load accumulated on those routers with respect to
our experiments. We plan to further investigate the reasons
for this outcome in our future work.

Next we check for a potential correlation between load
and degree distribution. Figure 9 depicts the relation be-
tween the degree of the routers and their load. Let � be a
random variable denoting the degree of routers and � be a
random variable denoting the load on routers. The correla-
tion of � and � is defined by

���� �
������ �������
�

VAR���VAR���
�

From this, we compute the correlation of � and � as 0.3,
which indicates that there is a positive but not a significant
correlation between the degree of a router and its load. This
is also seen from the figure. Specifically, the highest degree
for a router in our data set is 55. However, the load on that
router is not as high as that on others. In addition, the degree
of the router which has the highest load in the worst case is
40. And, the average degree for the backbone routers is 17.
This observation makes perfect sense when we consider the
hierarchical structure of the Internet topology. That is, in
the Internet, it is the exchange point and border routers that
have a large number of peers. Core routers, on the other
hand, bear a large load (i.e., appears on a lot of end-to-end
paths) but do not peer with a large number of other nodes.
Note that previous studies that use AS level topology maps
cannot reflect this observation.

In summary, in unicast environments, load accumula-
tion at the core is significantly more than other parts of the
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Figure 9. Degree vs load distribution.

network. Most of the highly loaded individual routers are
backbone and exchange point routers. However, our obser-
vations on the average load distribution suggest that not all
backbone routers are highly loaded in our data set. In ad-
dition, the results indicate that there is a positive but not so
significant correlation between the degree of a router and its
load.

6 Conclusions and Future Work
In this study, we first collected an end-to-end router-

level Internet topology to study the scale and the distribu-
tion of state overhead on the routers. In contrast to (k,m)-
traceroute approaches, we used (n,n)-traceroute approach
and justified its representativeness. We then used this topol-
ogy and analyzed the distribution of state overhead incurred
by value-added services in both multicast and unicast en-
vironments. Specifically, we have shown that usage rate
(i.e., number of trees) of multicast services is more impor-
tant than session density in increasing the overall state over-
head in the network. This suggests that tunneling mech-
anisms (e.g., aggregated multicast) that combines multiple
multicast trees into one single tree is an effective approach
in reducing the overall state overhead in the backbone. On
the other hand, we have observed that such an approach is
not always effective in reducing the state overhead at some
of the heavily loaded border and exchange point routers.
In the context of unicast services, we have shown that the
backbone and the exchange point routers bear a heavy load.
Therefore, it is deemed necessary to develop mechanisms
that can reduce the state overhead not only at the core of the
network (as done in DiffServ) but also at the exchange point
routers.

Our work in this paper can be improved in several di-
rections. One future work item is to collect and process
a larger scale (n,n)-traceroute based Internet topology for
studying the load distribution in the Internet. The recent
DIMES project (www.netdimes.org) of Tel Aviv Uni-
versity uses (n,n)-traceroute approach to collect a very
large scale Internet map. The topology collected by this
project would be an excellent data set to apply and extend
the work presented in this paper. Another future work item
is related to the observation we made about the importance
of IP alias resolution in constructing a representative topol-
ogy from the collected traces. At this end, we plan to inves-
tigate IP alias resolution and identification of unresponsive
routers to improve the representativeness of the collected



topologies. Finally, we plan to extend our study by consid-
ering various average-case load distribution characteristics
under different traffic patterns.
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