
Adaptive Sleep Scheduling for Energy-efficient Movement-predicted
Wireless Communication ∗

Yu Dong and David K. Y. Yau
Department of Computer Science, Purdue University, West Lafayette, IN 47906

{dong, yau}@cs.purdue.edu

Abstract

Energy efficiency in network communication is critical
for wirelessly connected small computing devices, which
run on limited battery capacity. Under realistic movement
scenarios (e.g., a person traveling at airplane, automobile,
or biking speed), a mobile sender can track its own move-
ment and postpone communication (subject to application
deadline constraints) until it moves close to the communi-
cation target. This will save significant energy of sending,
which grows superlinearly with the communication distance
in, say, the single hop wireless context. However, move-
ment tracking requires the mobile device to be turned on
and hence consumes energy. Instead of continuous track-
ing, the mobile device should sample its movement and be
allowed to sleep between the sampling instants (provided
that the application also does not have work to do during
the sleep). In this paper, we present an adaptive sched-
uler for determining an effective sampling schedule given
changing operating conditions. Our experimental results
show that the scheduler can achieve substantial energy sav-
ings over a device that is always on. Moreover, the sched-
uler’s adaptivity allows it to outperform fixed sleep periods
between tracking, since the “right” sleep period depends
on dynamic system conditions and cannot be determined a
priori.

1. Introduction

Current progress in computing technologies makes it
possible to build embedded systems on tiny computing de-
vices like sensors, on which diverse applications can be
developed. However, these tiny sensor devices are typi-
cally resource-limited: lower computation capacity, smaller
memory for computing, shorter radio range of communi-
cation, and most of all, limited power supply. The limited

∗Research was supported in part by the National Science Foundation
under grant numbers CCR-9875742 (CAREER) and CNS-0305496, and
in part by an IBM Fellowship awarded to Y. Dong.

power supply requires efficient energy use strategies such
that the sensor devices can complete their assigned tasks
within the energy budget.

To increase the lifetime of power-limited mobile devices,
much research has focused on energy efficiency by using ei-
ther hardware or software approaches to reduce the energy
consumption on these devices. Wireless network commu-
nication can be energy expensive, and should be targeted
for significant energy savings. Previous work [3] has shown
how the movement history of a mobile sender can be used
to predict if the sender will likely move close to its receiver
by an application deadline. If so, the data transmission can
be postponed until the predicted time when the communi-
cating parties are close to each other, thereby saving trans-
mission energy. In the case of single hop communication,
the energy saving is obvious since the required transmis-
sion power grows superlinearly in the transmission distance.
In the case of multihop transmission, reduced physical dis-
tance between the two nodes does not necessarily imply a
reduction in the network distance (i.e., the number of hops
between the two nodes). However, reduction in the network
distance is still highly likely provided that the network is
not very sparse. Moreover, we can expect the lengths of the
individual hops to be smaller.

Whereas motion prediction can be useful, its perfor-
mance depends on the accuracy of movement tracking.
Continuous tracking would require a mobile device to be
always turned on, which can consume excessive energy. In-
stead of continuous tracking, a mobile device should sam-
ple its movement and be allowed to sleep between the sam-
pling instants, provided that the application also does not
have work to do between the two instants. We will show
that more frequent position sampling will generally lead to
better expected performance of motion prediction, which
will in turn lead to reduced energy use of wireless trans-
mission. Conversely, however, less frequent sampling will
allow longer sleep periods, and hence better energy conser-
vation of the idle device, between samples. We must there-
fore balance between the dual goals of saving energy for
network transmission versus saving energy for the overall

system. An adaptive scheduler should be designed for a
mobile sender to determine an optimal frequency of sam-
pling (and hence, a suitable packet transmission schedule)
based on dynamic operating conditions.

We have evaluated the performance of our adaptive
scheduler through both packet-level network simulations
and detailed measurements of a prototype implementation
on the Berkeley mote. Our experimental evaluations are
driven by several real world movement scenarios of a mo-
bile device – e.g., a device carried by a walking person, a
runner, a bicycle, an automobile, or an airplane. Our re-
sults show that the scheduler can simultaneously reduce the
energy use by the wireless communication and by the total
system, thereby significantly extending the lifetime of mo-
bile sensor devices.

1.1. Paper organization

The balance of the paper is organized as follows. Neces-
sary background of energy-efficient motion-predicted wire-
less communication is presented in Section 2. The sys-
tem model is defined, and the need for on-line determina-
tion of suitable sleep times is motivated. In Section 3, we
propose four adaptive sleep schedulers for computing ef-
fective sleep and position update schedules under changing
system conditions. Section 4 discusses the design and im-
plementation of our power management architecture on a
TinyOS/Berkeley mote device. Simulation and implemen-
tation results and their analysis are presented in Section 5.
Related work is discussed in Section 6. Section 7 concludes.

2. Sampling Schedule of Movement Prediction

2.1. Basics of movement-predicted wireless communica-
tion

We review the prior work in [3] on movement-predicted
energy-efficient wireless communication.

2.1.1 System Model
We consider the system model of an ad-hoc wireless net-
work in which a set of mobile nodes communicate with a
stationary receiver node, which we call the target. (A sta-
tionary target simplifies discussions, but the assumption can
be easily removed to address a mobile target, as discussed
in [3].) The whole network is divided into virtual grids
in two-dimensional space. (Generalization to 3D space is
straightforward.) We assume that each node knows its posi-
tion through GPS (or similar positioning systems) and con-
sequently can associate itself with a grid. We assume slotted
time and that a node remembers its movement history as the
sequence of grid IDs it visited during the previous n time
slots. We also assume that all the nodes know the position
y of the target.

There are two main system parameters used by a mobile
node to predict its movement: The length n of the move-

ment history remembered, and the maximum allowable de-
lay, denoted as D (in seconds), for which a communication
can be postponed since arrival. We also define the following
terms. Let N be the total number of grids in the network.
Sh = {x1, x2, ..., xm} is the sequence of the m previous
grid positions visited by the mobile node h, where xi is the
ith grid ID and xm is the most recent grid ID visited in the
sequence. We also define d(i, j) as the Euclidean distance
between two grid positions i and j.

2.1.2 Postponement algorithm
To reduce energy use in wireless transmission, a mobile
sender attempts to postpone communication until the pre-
dicted time when it moves “close” to the target node, sub-
ject to the application deadline D. When the deadline is
reached, the node will carry out the communication at the
Dth time slot without waiting any further. At this time, if
the mobile node is further from the target than it was, it will
likely end up using more energy and we call this the estima-
tion penalty.

Several postponement algorithms are studied and exten-
sively evaluated in [3]. Among them, the Least Distance
(LD) algorithm is shown to be the simplest and most effec-
tive. Unless otherwise specified, we use LD as the post-
ponement algorithm in this paper. We now review its essen-
tial properties.

The LD algorithm is based on the 37% rule of the Best-
choice(r) algorithm, which solves the well known secretary
problem. The secretary problem presents a set of candidates
sequentially. When a candidate is presented, an irrevocable
choice must be made either to accept or reject the candi-
date. It is thus similar to the sequence of decisions a mobile
sender will have to go through deciding whether to commu-
nicate or not. According to the 37% rule, the first 37% of
the candidates are just evaluated, but not accepted. Then we
take the candidate whose relative rank is the first among the
candidates seen so far [6]. In our case, we assume that we
have already seen the first 37% or more of the candidate po-
sitions as the location history. We first find the least distance
dmin between a mobile node and the target in the history of
that node:

dmin = Min∀x∈Sh
d(x, y)

Then, in each of the next D time slots we check if the
current distance d is less than or equal to dmin. At any time
slot, if we find d ≤ dmin, we communicate immediately;
else we communicate at the Dth time slot.

2.2. How position sampling affects movement prediction

In [3], a constant position sampling rate of one sam-
ple/time slot is assumed. In general, the sampling rate
can be considered a system parameter denoted by R (in
samples/second). Then k = DR gives the maximum

number of samples that can be obtained by the deadline.
We now illustrate how R can affect the performance of
a postponement algorithm, given a simplistic uniform
random mobility model of how a node moves (i.e., the
mobile node is equally likely to move to any grid position
in each time slot). The postponement algorithm is such
that the mobile sender will decide to communicate once
it is tracked to be in the same grid position as the target.
Otherwise, communication is postponed until the deadline
is reached.

Theorem 1 Given a maximum allowable delay D, the
probability that a mobile node is not tracked to be in the
grid of the target node at sampling rate R1 is strictly lower
than the same probability at a lower sampling rate R2.

Proof: Please refer to [5]. �

Theorem 1 tells us that a mobile node using a higher po-
sition sampling rate is always less likely to miss a close
position for communicating with the target. On the basis
of Theorem 1, we show how R may affect the communi-
cation energy saving achieved by the postponement algo-
rithm. We let y be the target’s position, Ci be the energy
cost of network communication if the mobile node is in grid
ID i, (1 ≤ i ≤ N), and C′

y be the expected energy cost of
network communication if the mobile node is not in grid ID
y. Now,

C′
y =

N∑

i=1,i�=y

1
N − 1

Ci (1)

The expected energy cost of communication without post-
ponement is

Eo = C′
y (2)

and the expected energy cost with postponement is

Em = [1 − (1 − 1
N

)k]Cy + (1 − 1
N

)kC′
y (3)

The expected energy saving is

Eg = Eo − Em = [1 − (1 − 1
N

)k](C′
y − Cy) (4)

The next theorem shows how R may affect the expected
energy saving, denoted by Eg , of the wireless communica-
tion.

Theorem 2 Given a maximum allowable delay D, the
postponement algorithm can achieve a strictly higher
expected energy saving Eg on the communication when the
position sampling rate is higher.

Proof: Please refer to [5]. �

2.3. Sleep more or sample more?

Theorems 1 and 2 suggest that, by applying the post-
ponement algorithm, a mobile node should sample its posi-
tion information as frequently as possible to maximize the
energy saving of the communication. The situation can be
illustrated in Figure 1(a), which shows the network energy
consumption as a function of the sleep period between two
consecutive samplings, denoted by tsleep. We expect the
function to be monotonically increasing, since longer sleeps
will lead to less accurate tracking and also more misses of
good opportunities for communication.

Etotal

tsleeptoptimal

Eoptimal

(c)

tsleep

(a)

Ecommunication

tsleep

Esystem

(b)

Figure 1. Energy consumption as a function of the
fixed sleep period tsleep, for (a) communication,
(b) system without communication, and (c) over-
all system.

On the other hand, a sleeping device consumes minimal
energy, and a longer sleep period will cause less frequent
transitions between the on/off states of the device. Hence, if
we ignore the need for network communication, energy use
of the overall system will decrease as the sleep period in-
creases. This is illustrated by the monotonically decreasing
function in Fig. 1(b). Jointly considering the two sources
of energy expenditure in the total system, Fig. 1(c) shows
the inherent tradeoff between saving more energy of wire-
less communication by sleeping less often and saving more
energy of the overall system by sleeping more often. Notice
from the figure that there exists an optimal sleep period,
denoted by toptimal, at which the total energy use by the
system is minimized.

In practice, determining toptimal can be difficult, since
its value changes according to dynamic conditions such as
the current movement of the mobile device and the remain-
ing delay budget of the application. We now discuss how
an adaptive scheduler can be designed to track the value of
toptimal in the presence of such system dynamics.

3. Adaptive Wakeup Scheduling

Instead of using a fixed sleep period between samples,
a mobile device should adapt its sleep schedule online.
Specifically, each time the device wakes up to sample its
(i− 1)st position, it also determines the sleep time until the
ith position update based on the current system parameters.

We have studied four adaptation strategies: speed-
based adaptation (SBA), delay budget-based adaptation
(DBA), prediction performance-based adaptation (PePA),
and position-based adaptation (PoBA). SBA and PoBA
adapt the sleep period to the nodal movement, DBA adapts
based on the current remaining delay budget, while PePA
adapts based on the observed achievable distance saving so
far. SBA and PoBA work by assuming that the nodal speed
and direction will likely not change a lot during the sleep
provided that the sleep period is reasonably small in the
context of the nodal movement. E.g., a cruising airplane
will likely not change its speed and direction much over say
30 minutes, while a running athlete will likely maintain his
current movement over a period of say 30 seconds.

3.1. Speed-based adaptation (SBA)

When a mobile device moves at a higher (e.g., automo-
bile) speed, it may require more frequent position updates to
prevent missing significant position changes which may af-
fect the decision to communicate or not. On the other hand,
a mobile device moving at low speed (e.g., a walking per-
son) can afford to increase the sleep period without missing
critical information.

SBA uses the above observation to adapt the sleep pe-
riod to the current nodal speed observed. Also, since our
movement model is based on a grid-based network, we can
determine the sleep time until the next position update as
follows:

Speedi =
q

(xi − xi−1)2 + (yi − yi−1)2/Tsleepi−1 (5)

Tsleepi
= (

Side

2
)/Speedi (6)

where Tsleepi is the sleep time to use until the ith (i.e., next)
position update, Side is the length of a grid, and Speedi is
the currently observed nodal speed. Physically, Equation 6
calculates the expected time required for the node to move
to a neighbor grid given its current speed. This time is then
used as the sleep time until the next position update. Let
MP denote LD motion prediction algorithm hereafter, and
the pseudo-code of SBA is given as follows:

SPEED BASED ADAPTATION()
1 At each wakeup
2 Update position information
3 Calculate current speedi

4 Calculate Tsleepi

5 for each data packet in Queue
6 if MP predicts current position is good or deadline reaches
7 or delay + Tsleepi

> deadline

8 send packet
9 else

10 delay = delay + Tsleepi

11 end if
12 end for
13 SLEEP(Tsleepi

)
14 end wakeup

3.2. Delay budget-based adaptation (DBA)

When the communication deadline is fast approaching
(i.e., little remaining delay budget before communication is
due), a mobile device may require more attempts to find
a closer position to the target before the deadline expires.
Thus, more frequent position updates are suggested, and
a shorter sleep time should be used. Accordingly, DBA
adapts the sleep period to the average delay budget of the
pending communications (i.e., the buffered packets waiting
to be sent). The sleep time until the ith (i.e., next) position
update is calculated as follows:

rdelayi
= (

1

M

MX
i=1

di)/D (7)

Tsleepi
= (1 − rdelayi

) · α · D (8)

where M is the total number of pending communications,
D is the maximum allowable delay for each communication
(Equation 8), α is a tunable system parameter that adjusts
the weight of the delay budget ((1−rdelayi)·D) in calculat-
ing the next sleep period. A larger α will allow more sleep
until the deadline is reached. The performance results in
Section 5 show how α can affect the sleep period and hence
the performance of adaptation. The pseudo-code of DBA is
given as follows:

DELAY BUDGET BASED ADAPTATION(α)
1 At each wakeup
2 Update position information
3 for each data packet in Queue
4 Calculate remaining delay budget
5 end for
6 Calculate Tsleepi

with α
7 for each data packet in Queue
8 if MP predicts current position is good or deadline reaches
9 or delay + Tsleepi

> deadline
10 send packet
11 else
12 delay = delay + Tsleepi

13 end if
14 end for
15 SLEEP(Tsleepi

)
16 end wakeup

3.3. Prediction performance-based adaptation (PeBA)

An important performance metric of movement predic-
tion is the saving in communication distance achieved so
far, which can be observed in real time. With PeBA, we use
the distance saving information to determine the sleep time
until the next update. The distance saving achieved at the
current update is compared with the last saving achieved.

If the distance saving decreases, the mobile device should
be given more attempts to find a good position to commu-
nicate, by sampling more frequently. Otherwise, the sleep
time can increase. Specifically, the sleep time is calculated
as follows:

rsavei = (
1

M

MX
j=1

distcj)/(
1

M

MX
j=1

distoj) (9)

Tsleepi
= (rsavei−1/rsavei) · Tsleepi−1 (10)

where distoj is the communication distance of the jth
pending packet from the target at the time the packet was
generated (1 ≤ j ≤ M , for M pending communications),
and distcj is the current communication distance of the jth
pending packet from the target. rsavei is thus the ratio of
the average current distance to the average original distance.
Tsleepi is the sleep time until the next position update. The
pseudo-code of the PeBA is given as follows:

PREDICTION PERFORMANCE BASED ADAPTATION()
1 At each wakeup
2 Update position information
3 for each data packet in Queue
4 Calculate current distance saving
5 end for
6 Calculate Tsleepi

with α
7 for each data packet in Queue
8 if MP predicts current position is good or deadline reaches
9 or delay + Tsleepi

> deadline
10 send packet
11 else
12 delay = delay + Tsleepi

13 end if
14 end for
15 SLEEP(Tsleepi

)
16 end wakeup

3.4. Position-based adaptation (PoBA)

We can combine the information used in SBA (i.e., nodal
speed) and DBA (i.e., remaining delay budget) to effect a
position-based adaptation strategy (PoBA). With PoBA, the
node, on waking up, tries to determine its sleep time Tsleepi

until the next position update. To do so, let delaymax be the
longest time by which any of the node’s pending commu-
nications has been delayed, so that D′ = D − delaymax is
the smallest delay budget among the pending communica-
tions. Iteratively, the node considers a candidate sleep time
tj , where t0 has value D′. In each iteration, if tj is less
than one time unit, the iterative procedure ends, and Tsleepi

is set to be one time unit. Otherwise, supposing that the
sleep time is tj , the node estimates its distance ˆdistj from
the target at the time of the next position update, as follows:

tan αi = (yi − yi−1)/(xi − xi−1) (11)

∆̂rj = Speedi · tj (12)

∆̂xj = ∆̂rj · cos αi = ∆̂rj/
p

1 + tan2 αi (13)

∆̂yj = ∆̂xi · tan αi (14)

ŷj = yi + ∆̂yj (15)

x̂j = xi + ∆̂xj (16)

ˆdistj =
q

(ŷj − Y)2 + (x̂j − X)2 (17)

If ˆdistj is predicted to be a “good” distance for commu-
nication (e.g., less than or equal to the historical minimum
distance, in the case of the LD algorithm), the iteration ends,
and the current tj is used as the sleep time Tsleepi . Other-
wise, we repeat the iterative procedure with tj+1 set to tj
minus one time unit.

The experimental results in Section 5 show that by mak-
ing more elaborate assumptions about a node’s movement,
PoBA can in fact be less effective than the simpler SBA and
DBA approaches. We omit the pseudo-code of PoBA in
this paper due to limited space; interested readers may refer
to [5] for the details.

4. System Design and Implementation on Sen-
sor Network Platform

4.1. System Design

In prototyping our adaptive scheduler on a sensor device,
which is resource constrained, simplicity and efficiency are
two important goals. Figure 2 shows the architecture of the
software system. The core system component is the power
manager, which monitors the performance of the move-
ment prediction, receives packets generated by applications,
schedules the packet transmission, and puts the system into
sleep whenever appropriate. In addition, the power man-
ager powers control the wireless radio interface based on
the result of the movement prediction.

The power manager has two main schedulers: a trans-
mission scheduler and a sleep scheduler. The transmis-
sion scheduler schedules pending packets for transmission.
The sleep scheduler determines the schedule of position up-
dates; it puts the system to sleep between updates provided
that the application is idle. The power manager maintains a
traffic queue of all the pending packets. In addition, a traf-
fic table stores the necessary state information about each
packet in the traffic queue (e.g., the packet’s remaining de-
lay budget).

Besides the power manager, a positioning system com-
ponent keeps location information about the mobile node
for functions of power management and routing. Underly-
ing OS services for the system prototype are provided by
TinyOS running on the Berkeley Mica Mote. Implementa-
tion details are described in the following section.

4.2. Implementation approach

Our system is implemented on Berkeley mote running
TinyOS. Furthermore, we have prototyped a sample appli-
cation that generates data packets at a constant rate. Each
packet has a static deadline. As described, the transmission
and sleep schedulers jointly decide when to send the packets
generated by the application.

Traffic Table

Application

Operating System Services

Positioning

SystemTransmission
Scheduler

Traffic Queue

Scheduler
Sleep/Wakeup

Power Manager

Figure 2. Overview of mobile node system archi-
tecture

The prototyped transmission scheduler implements the
Least Distance (LD) algorithm, as explained in Section 2.
The sleep scheduler puts a sensor node to sleep by using the
Snooze TinyOS component. It can be programmed to ap-
ply either fixed or adaptive sleep periods between position
updates.

The current system prototype does not use GPS. Instead,
we emulate the movement updates using a software compo-
nent which periodically generates new position information.
The updates are driven by either a Position Generator com-
ponent running in real-time or by a stored mobility profile.
Notice that a system equipped to use GPS will not induce
much additional energy overhead as available commercial
GPS systems consume as low as 12 ∼ 24 mW in full oper-
ation [1] (energy consumption is even lower in power saving
mode).

Power control of wireless transmission is important.
With the Mica Mote, a TR1000 916.5 MHz transceiver is
used as the radio interface. With the knowledge of the com-
munication distance from the receiver, the corresponding
transmitter output power can be set by a TinyOS compo-
nent called Pot.

5. Performance Evaluation

We evaluate the performance of the proposed adaptive
scheduler through both packet-level network simulations
and measurement results on our system prototype. For
both sets of results, we report the percentage energy sav-
ing in communication and the percentage distance saving
as the main performance metrics. We also report the aver-
age number of wakeups used by the different adaptive sleep
schedulers until the pending data are sent. A larger number
of wakeups indicates shorter sleep intervals, and hence in-
creased energy consumption. Lastly, energy-efficient com-
munication is achieved by postponing packet transmission.
The actual packet delays caused by the postponement strat-

egy are reported for the measurement results.

5.1. Simulation results

Nodal movement in our simulations is defined in a move-
ment file. Unless otherwise specified, all the movement
files are generated by the CMU node-movement genera-
tion tool setdest, using the mobility model given in Sec-
tion 5.1.1. The mobile node moves in a 150 m by 150 m
area. The simulation area is divided into twenty-five 30 m
by 30 m grids. A destination node of the network traffic
is located in one of the grids. Simulation traffic is gener-
ated at continuous bit-rate (CBR) with a packet size of 1500
bytes. Each traffic burst consists of 10 packets with an inter-
packet interval time of 0.005 seconds, and the correspond-
ing bit-rate is about 2.4 Mbit/s. A burst is generated every
200 seconds. To calculate the transmission power, the stan-
dard two-ray-ground model is used as the wireless propaga-
tion model with the following parameters: transmit antenna
height ht and receive antenna hight hr are both 1.5 m; trans-
mit gain Gt and receive gain Gr are both 1.0; frequency fc

is 914.0e6 Hz; λ is 3.0e8/fc; receiving power threshold is
5.00302e-07 W. Each simulation run lasts 20,000 seconds
of simulation time. Five independent runs are repeated for
each experiment. The average and confidence interval over
the five runs are reported in the results.

5.1.1 Mobility Model

Our experiment uses the random waypoint mobility model
with the modifications proposed in [15]. The original ran-
dom waypoint mobility model fails to maintain a meaning-
ful steady-state average speed of nodal movement. In the
modified random waypoint model, lower and upper bounds
on the nodal speed, denoted as speedmin and speedmax re-
spectively, are introduced, and the average nodal speed at
steady state can be shown to be about speedmax−speedmin

2 .
We further define several mobility scenarios correspond-

ing to plausible nodal speeds in real life. They are specified
as walker, runner, bicycle, vehicle(local), vehicle(highway)
and airplane. in Table 1.

Table 1. Average Speed of Different Mobility Sce-
narios

scenario m/s km/h mile/h

walker 2 7.2 4.5
runner 3 10.8 6.8
bicycle 7 25 15.6
vehicle(local) 20 72 45
vehicle(highway) 30 108 67.5
airplane 80 288 180

For each mobility scenario, we set speedmin and
speedmax with four variance settings, namely 10%, 25%,
50% 75% of the average speed. For example, with a 10%
variance, the speedmin and speedmax of the walker sce-
nario are set to be 1.8 m/s and 2.2 m/s, respectively.

5.1.2 Periodic wakeup with fixed sleep periods

We evaluate the performance of the sleep scheduler using
fixed sleep periods. We vary the sleep period Tsleep and
the maximum allowable delay D in a set of experiments,
and measure the percentage distance/communication en-
ergy savings of the LD algorithm over a vanilla transmission
scheduler that sends packets as soon as they arrive. The re-
sults for the bicycle scenario are given in Figures 3 and 4.

1
5

10
50

100
150

10

50

100

200

300
400

0

10

20

30

40

50

60

70

Percentage Distance
Saving (%)

Sleep Length (second)

Max Allowable
Delay (second)

Figure 3. Percentage distance saving as a function
of fixed sleep period Tsleep and delay budget D.

1
5

10
50

100
150

10

50

100

200
300

400

0

10

20

30

40

50

60

70

80

90

Percentage Energy
Saving (%)

Sleep Length (second)
Max Allowable Delay

(second)

Figure 4. Percentage communication energy sav-
ing as a function of fixed sleep period Tsleep and
delay budget D.

From the figures, the performance of the motion predic-
tion, in terms of both distance and energy savings, generally
degrades as the sleep period increases. Particularly, when

the sleep period becomes too long, the performance drops
dramatically. The results confirm the discussions in Sec-
tion 3 for fixed periodic sleep.

5.1.3 Performance comparison between sleep strate-
gies

In this section, we compare the performance of fixed peri-
odic sleep and the adaptive sleep algorithms in Section 3. In
the experiments, we additionally enforce a minimum sleep
time of one second (i.e., if the sleep time calculated by an
algorithm is less than one second, we will use one sec-
ond as the actual sleep time). We report the average en-
ergy/distance savings achieved by the LD algorithm, and
the number of system wakeups (for position sampling) re-
quired by the sleep scheduler.

The reported results are for the bicycle mobility scenario.
For fixed periodic sleep, the sleep period of Tsleep = 1 sec-
ond is used, since it is shown to achieve the highest com-
munication energy saving given the simulation parameters
(see Figure 4). For DBA adaptation, we set α = 0.01.
We now summarize the results as follows. (In the fig-
ures, Fixed, Speed, Performance, Position, Delay-0.01 de-
note fixed sleep, SBA adaptation, PeBA adaptation, PoBA
adaptation, and DBA adaptation, respectively.)

A. Percentage distance savings. From Figure 5(a), the
different sleep algorithms show little difference in distance
saving when D is small (less than 10 s). This is because if D
is small, the node will have little opportunity to move close
to the target before the deadline expires. As D increases,
the achieved distance savings increase for the algorithms,
albeit at different rates. In general, DBA outperforms the
others in most cases, while SBA performs better when D
is not too big. For example, when D = 400 s, DBA and
SBA adaptations outperform fixed periodic sleep by 12%
and 6%, respectively, while PoBA and PeBA adaptations
has about the same performance as fixed periodic sleep.

B. Percentage communication energy savings. From
Figure 5(b), both SBA and DBA adaptations generally per-
form the best among all the sleep algorithms. The results
are consistent with the distance saving results.

C. Number of wakeups. We evaluate the average num-
ber of wakeups for each sleep algorithm until the pending
data are sent. A larger number of wakeups implies pro-
portionally higher energy consumption by the overall sys-
tem besides communication. The results are shown in Fig-
ure 5(c). Notice that fixed periodic sleep has the highest
number of wakeups, since a short sleep period is required to
achieve better energy savings in network transmission. No-
tice also that DBA performs the same as fixed period sleep
for D less than about 100 seconds. This is because when
D is small, DBA will calculate a small sleep time, and the
lower bound sleep time of one second will be used instead,

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

P
er

ce
nt

ag
e

D
is

ta
nc

e
S

av
in

g
(%

)

Maximum Allowable Delay (second)

Fixed
Speed

Performance
Position

Delay-0.01

Delay-0.01: 72%

Speed: 66%

Performance: 61%

Fixed: 60%

Position: 59%

(a) Percentage distance savings

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300 350 400

P
er

ce
nt

ag
e

C
om

m
un

ic
at

io
n

E
ne

rg
y

S
av

in
g

(%
)

Maximum Allowable Delay (second)

Fixed
Speed

Performance
Position

Delay-0.01

Delay-0.01: 89%

Speed: 89%

Performance: 87%

Fixed: 86%

Position: 78%

(b) Percentage communication energy savings

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450

N
um

be
r

of
 W

ak
eu

ps

Maximum Allowable Delay (second)

Fixed
Speed

Performance
Position

Delay-0.01

Delay-0.01: 18.69

Position: 13.31

Fixed: 41.91

Performance: 42.08

Speed: 32.74

(c) Number of wakeups

Figure 5. Performance Comparison with different wakeup strategies.

which is the same as the sleep period of the fixed algorithm.
Comparing Figures 5(a) and 5(c), we find that with SBA

and DBA adaptations, the system wakes up less frequently
(by 20% to 55%) than with fixed periodic sleep. At the
same time, both SBA and DBA produce better movement
prediction results than fixed sleep (e.g., 5% to 12% higher
in percentage distance saving). The results show that by
adaptively finding sampling times that are productive, the
system in fact outperform sampling times that are strictly
periodic, even when it has to work less hard.

In summary, we conclude that, SBA, DBA, and PeBA
adaptations generally outperform fixed periodic sleep. Par-
ticularly, SBA and DBA adaptations are able to maintain
good motion prediction performance (in terms of commu-
nication energy/distance savings) with fewer wakeups.

5.1.4 Performance comparison between mobility sce-
narios

The previous results are taken for the bicycle mobility sce-
nario. We now evaluate the performance of the sleep sched-
ulers under the different mobility scenarios presented in
Section 5.1.1, namely walking person, runner, bicycle, vehi-
cle (local), vehicle (highway), and airplane. The maximum
allowable delay D in the simulations is 200 seconds, and
the nodal speed variance is 25%.

Figure 6(a) illustrates the percentage distance saving for
the different mobility scenarios. The saving generally in-
creases as the mobility scenario changes from low to high
speed. This is expected, since by moving faster, a node may
have more opportunities to move to a better sending posi-
tion before the deadline expires. We also notice that as the
nodal speed increases, fixed periodic sleep, SBA, and PeBA
achieve the best distance savings. This is because a higher
nodal speed can cause significant position changes to hap-
pen more frequently, and hence can benefit from more fre-
quent position updates. Fixed periodic sleep is able to check
frequently in this experiment because a small sleep period is

used, as discussed above. As regards SBA and PeBA, both
algorithms are designed explicitly to use a higher sampling
frequency as the nodal speed increases.

The percentage communication energy savings in Figure
6(b) show similar performance as the percentage distance
saving in Figure 6(a). This follows from the observation
that a closer communication distance will likely result in
lower energy use.

Figure 6(c) shows the number of wakeups for the differ-
ent mobility scenarios. In general, the number of wakeups
decreases as the nodal speed increases. This is because as a
node moves faster, it will generally take less time to move
close to the target for communication. Therefore, there are
fewer wakeups and a smaller postponement delay before
the communication is carried out. From Figure 6(c), notice
also that unlike the other sleep algorithms, SBA adaptation
wakes up more times as the nodal speed increases over the
low to moderate speed range. When the nodal speed further
increases, however, the number of SBA wakeups begins to
decrease. This is because the lower bound sleep period of
one second will be used at the high nodal speed.

In summary, under low speed mobility scenarios, SBA,
DBA, and PeBA adaptations outperform fixed periodic
sleep in terms of higher distance and communication energy
savings and fewer wakeups. Under high speed mobility sce-
narios, SBA, DBA, and PeBA, adaptations perform as well
as fixed periodic sleep, but require less frequent wakeups.
Overall, the adaptive schedulers outperform fixed periodic
sleep under all the mobility scenarios studied.

5.1.5 Summary of simulation results

To summarize the simulation results, we notice that SBA
and DBA adaptations significantly outperform fixed peri-
odic sleep in terms of better savings in communication en-
ergy and distance, while requiring less sampling effort. The
improved performance appears robust in that it is evident
in all of the movement scenarios studied in this paper and

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80

P
er

ce
nt

ag
e

D
is

ta
nc

e
S

av
in

g
(%

)

Nodal Speed (m/s)

Fixed
Speed

Performance
Position

Delay-0.01

Fixed: 84%

Speed: 84%

Performance: 84%

Delay-0.01: 82%

Position: 76%

(a) Percentage distance saving with different
wakeup strategies.

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

P
er

ce
nt

ag
e

C
om

m
un

ic
at

io
n

E
ne

rg
y

S
av

in
g

(%
)

Nodal Speed (m/s)

Fixed
Speed

Performance
Position

Delay-0.01

Fixed: 98%

Speed: 98%

Performance: 98%

Delay-0.01: 96%

Position: 88%

(b) Percentage energy saving with different
wakeup strategies.

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 W

ak
eu

ps

Nodal Speed (m/s)

Fixed
Speed

Performance
Position

Delay-0.01

Position: 13.86

Speed: 15.64

Delay-0.01: 15.68

Fixed: 15.72

Performance: 15.92

(c) Number of wakeups with different wakeup
algorithms.

Figure 6. Performance Comparison between mobility scenarios

the extended results in the technical report [5]. In general,
PoBA does not perform as well in saving communication
distance and energy, because it can make too specific as-
sumptions about the future movement, which may not be
exactly true in practice.

5.2. Measurement results on sensors

5.2.1 Experimental setup

We measure the energy savings of the prototype mote sys-
tem described in Section 4 The system energy consumption
is measured as follows. A constant power supply provides
3.0 Volts of power to the mote. Between the power sup-
ply and the mote, we connect in series a small resistor of
0.05 Ohm to the power input line of the mote. The voltage
across the resistor is measured by an HP multimeter. The
current running through the power input line can then be
calculated as: I = Umeasure/R. Since the power input has
a constant voltage of Uinput, the power can be calculated as
P = Uinput · I , while the corresponding energy consump-
tion is E = Uinput · I · Tmeasure.

In our experimental setup, packets are generated at a
source mote and sent to a receiver mote serving as the target.
The target forwards the received packets to a connecting PC
for further processing and analysis. The source sensor node
does not physically move in our experiments. Instead, we
emulate movement using a positioning software component
which updates the position of the mobile node in real time
through a stored mobility profile. The vehicle(local) mobil-
ity scenario is used to drive an experiment. The sender then
regards itself as moving according to the position updates,
and when sending, powers control the packet transmissions
according to the emulated positions.

Application packets are generated at the source node as
follows. Every 16 time units, where each time unit is 1/16
second, a burst of ten 36-byte packets arrive back to back.
This corresponds to an average data rate of 10 packets/s.

All the packets in a burst receive the same static deadline of
D = 32 time units after arrival. Each experiment runs for
3,200 time units for a total of 200 bursts or 2000 packets.
Measurement results are taken as averages over 200 packet
bursts. In an experiment, we record all the multimeter read-
ings of the voltage across the small resistor, and their aver-
age is calculated. Each experiment is repeated three times,
and the reported power numbers are averages over the three
runs.

5.2.2 Performance comparison

Since DBA is found to perform well in simulation, we now
compare the performance of DBA with fixed periodic sleep
on the system prototype. For the fixed strategy, the sleep
period is varied to be 1, 2, 4, and 8 time units. The perfor-
mance metrics are the percentage distance saving, the num-
ber of sampling wakeups until the pending data are sent, the
actual postponement delay, and the power of the actual sys-
tem measured. A baseline system without applying sleep
scheduling is also measured for comparison.

Table 2. Comparison of Adaptive Wakeup sched-
uler, Fixed Wakeup scheduler and Non-sleep

Scheduler Power (mW) Distance Saving # of Wakeup Delay

Baseline 18.042 85.2% 0 4.83

Fixed (T = 1) 9.642 85.2% 5.71 4.83
Fixed (T = 2) 9.633 53.3% 4.67 7.34
Fixed (T = 4) 8.874 40.7% 3.54 10.16
Fixed (T = 8) 8.904 5.1% 1.8 6.40
DBA 8.193 44.8% 3.17 9.66

The measurement results are shown in Table 2. The re-
sults show that both the fixed and DBA sleep algorithms sig-
nificantly reduce (by 45%–55%) the energy consumption of

the total system compared with the baseline system. Notice
also that as T increases from 1 to 4 time units, the total en-
ergy use decreases, as more energy is saved by sleeping. As
T increases from 4 to 8 time units, however, the energy use
instead increases slightly. This is because the energy saved
by sleeping is now outweighed by the increased energy of
communication as movement prediction becomes less ef-
fective with a longer sleep. Hence, total system energy use
increases. The situation shows the need and difficulty of
determining an optimal sleep period using the fixed strat-
egy. The DBA algorithm, however, is able to adapt its sleep
schedule to minimize wakeup and yet keep the effectiveness
of the LD postponement algorithm. Hence, the measured
energy use of the total system is reduced significantly, by
8% to 15% compared with the best fixed periodic sleep al-
gorithm, and by 55% compared with the baseline system.

6. Related Work

The problem of limited battery on mobile sensor devices
has recently received a lot of attention. Much research, in
particular, has focused on optimizing networking protocols
for energy efficiency (e.g., [8]).

Previous work on mobility prediction [2, 9–11] has fo-
cused on resource reservation and quick handoff manage-
ment between base stations to provide QoS support for mo-
bile wireless users. In [12], motion prediction is used to
minimize disruptions induced by frequent changes in ad
hoc network topology, and to rapidly and proactively re-
construct routes based on predictions of the future network
topology. In [7], mobility is exploited to increase the ca-
pacity of ad hoc wireless networks. Their work addresses
QoS and reduced routing overhead. They do not address
the issue of energy conservation for mobile sensor devices.
Wakeup schedules have been studied by [4,13,14,16]. They
are concerned with improving network connectivity, end-
to-end delay, and network throughput, and therefore have a
different focus than our work.

7. Conclusion

Effective and energy-efficient sampling of node move-
ment enables motion-predicted communication, which can
save significant energy of wireless transmission. In this pa-
per, we have presented an adaptive scheduler for determin-
ing an effective sampling schedule given dynamic system
conditions. Between two sampling instants, a mobile node
can be put to sleep, conserving power. Our implementa-
tion and simulation results show that the adaptive sched-
uler can achieve substantial energy savings over a system
that does not exploit opportunities to sleep. Moreover, the
scheduler’s adaptivity allows it to outperform fixed sleep
periods between sampling, since the “right” period depends
on dynamic system conditions and cannot be determined a

priori. The motion tracking enabled by our sleep scheduler
has applications beyond energy management. For example,
it can enable the prediction of location-dependent wireless
channel conditions (e.g., interference) to improve transmis-
sion throughput.

References

[1] http://rfdesign.com/news/integrated-GPS-receiver/

[2] A. Bhattacharya and S. K. Das, “LeZi-Update: An Information-
theoretic approach to track mobile users in PCS networks,” in Proc.
ACM/IEEE MobiCom, Aug. 1999, pp. 1-12

[3] S. Chakraborty, Y. Dong, D. K. Y. Yau, and J. C. S. Lui, “On the Ef-
fectiveness of Movement Prediction To Reduce Energy Consumption in
Wireless Communication,” IEEE Transactions on Mobile Computing,
To Appear.

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
Energy-Efficient Coordination Algorithm for Topology Maintenance in
Ad Hoc Wireless Networks,” in Proc. ACM/IEEE MobiCom, 2001

[5] Y. Dong and D. K. Y. Yau, “An adaptive sleep scheduler for energy-
efficient movement-predicted wireless communication”, Technical Re-
port, CS Dept, Purdue University, West Lafayette, IN, April 2005.

[6] P. R. Freeman, “The secretary problem and it’s extensions: A review,”
International Statistical review 51, 189-206, 1983

[7] M. Grossglauser and D. Tse, “Mobility Increases the Capacity of Ad-
hoc Wireless Networks,” in IEEE/ACM Transactions on Networking,
vol. 10, no. 4, August, 2002, pp. 477-486.

[8] D. B. Johnson, D. A. Maltz and J. Broch, “DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Networks,” Ad Hoc
Networks, edited by C. E. Perkins, Chap. 5, pp. 194-172, Addison-
Wesley, 2001

[9] D. Levine, I. Akyildiz and M. Naghshineh, “A Resource Estimation
and Call Admission Algorithm for Wireless Multimedia Networks Us-
ing the Shadow Cluster Concept,” IEEE/ACM Trans. on Networking,
5(1), Feb. 1997, pp 1-12.

[10] G. Liu and G. Maguire Jr., “A Class of Mobile Motion Prediction
Algorithms for Wireless Mobile Computing and Communications,”
ACM/Baltzer MONET, 1(2), 1996, pp. 113-121

[11] T. Liu, P. Bahl and I. Chlamtac, “Mobility Modeling, Location Track-
ing, and Trajectory Perdition in Wireless ATM Networks,” IEEE JAC,
16(6), Aug. 1998, pp. 922-936

[12] W. Su, S. J. Lee and M. Gerla, “Mobility Prediction and Routing in
Ad Hoc Wireless Networks”, International Journal of Network Man-
agement, Wiley & Sons, 2000

[13] X. Yang, and N. Vaidya, “A Wakeup Scheme for Sensor Networks:
Achieving Balance between Energy Saving and End-to-end Delay,” in
Proc. the 10th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS 2004), pp. 19-26, May 2004

[14] W. Ye, J. . Heidemann, and D. Estrin, “An Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” in Proc. IEEE Inforcom, 2002

[15] J. Yoon, M. Liu and B. Noble, “Random Waypoint Considered
Harmful,” in Proc. IEEE INFOCOM, Apr. 2003

[16] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous Wakeup for Ad Hoc
Networks: Theory and Protocol Design,” in Proc. MobiHoc’03, 2003

