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1. INTRODUCTION
An increased number of applications, such as computational
grids, testbeds, peer-to-peer networks, and sensor networks
(among many others) rely on finding a set of resources that
meet certain criteria for their operation. In particular, in
many of these cases their requirements may be described
as a labeled graph where nodes represent computational re-
sources and links represent connectivity/communication re-
quirements. Similarly, the infrastructure where the service
will be deployed is also described by a labeled graph, where
the attributes of nodes and links represent their capabilities.
The problem of finding a feasible set of links and nodes on
which to deploy the service is what we call the embedding

problem.

As an illustrative example, consider the problem of mapping
a sensor network application where nodes represent either
sensing or computation operations and the application needs
to find a set of resources subject to some constraints, e.g.

the sensed variable, the location the sensor; the computa-
tion nodes need to be within some delay from the sensors to
process real time data, and must have at least certain band-
width to meet the sensor data transfer rate. The queries
need to be processed at the nodes imposing a constraint in
their computational power. Finally, the results have to be
delivered to the clients, which gives some additional com-
munication requirements. This simple scenario illustrates
the sort of constraints and requirements that an embedding
service must provide.
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The problem of finding the set of resources that match the
requirements is clearly a combinatorial search/optimization
problem. In particular, we distinguish the search as finding
feasible embeddings and the optimization as finding the best

embedding with respect to an optimality metric. Typical so-
lutions in the bibliography have considered various heuristics
to solve this problem. That is the case of Emulab/NetBed [1,
8] where both, simulated annealing and genetic algorithms
have been used. Also, SWORD [6] considers some prun-
ing heuristics, tailored for the particular case of PlanetLab,
in order to significantly reduce the search space. Both ap-
proaches sacrifice soundness, though. They may return false
negatives: a no-solution answer when in fact there is a solu-
tion.

On the other hand, work in other areas has proposed the us-
age of constraint satisfaction techniques. For example, gang-

matching for Condor [7], and Redline [4], use constraint sat-
isfaction techniques to match the jobs’ requirements with the
computational capabilities of the nodes, the available soft-
ware at the nodes, etc. However, none of these approaches
take topology into consideration. This issue becomes par-
ticularly important as distributed applications are being de-
ployed in WAN environments, where link capacities and de-
lays have a significant influence in the overall performance
of the application.

In the context of overlay networks, the work in [3] showed
how constraint satisfaction techniques could be efficiently
applied to the solution of embedding problems. Our work
follows the same lines by providing techniques that improve
the performance, while preserving the soundness (i.e. only
return true positives) by never pruning feasible parts of the
search space.

2. NETEMBED FRAMEWORK
Our framework is designed to take three inputs: 1) a descrip-
tion of the infrastructure where the overlays are going to be
deployed. This description is given in the form of a labeled
graph, where labels describe capabilities of links and nodes;
2) a description of the overlay, also as a labeled graph, but
this time the labels represent the overlay’s requirements; and
3) a constraint expression that establishes the conditions on
how to match the overlay’s requirements and with the infras-
tructure’s capabilities. We use the GraphML [2] standard
to represent both the infrastructure and the overlay, and



the constraint expression is given as a boolean formula re-
lating the attributes of both. A mapping is feasible if this
expression is true for all links and nodes.

For solving the mapping problem, we developed three tech-
niques:

Exhaustive Search with Constraint Filtering – ECF:

This algorithm follows the standard technique of exploring
the space using a depth-first search, with various optimiza-
tions: 1) Pruning the current branch as soon as it becomes
infeasible, 2) Reordering the per-node candidate sets by in-
creased cardinality, which significantly reduces the size of
the search space, and 3) Precomputing sets feasible map-
pings for links, so that given the current mappings, the next
node can be found using the intersection of these sets. The
combination of the three techniques significantly reduces the
search space, making it possible to obtain feasible mappings
very quickly (in some cases all feasible mappings) 1 .

Random Walk with Backtracking – RWB:

This technique is basically a variation of the previous one.
Instead of doing an ordered exploration of the search space,
it does a random walk pruning the search space as soon as
infeasible regions are discovered, pre-computing candidate
sets and reordering by the cardinality of the candidate sets.
Experimental results showed that there is not significant dif-
ference in performance as compared to the ECF technique.
Further analysis revealed that when constraints are tight,
both ECF and RWB spend most of the time in the precom-
putation stage and are very fast finding the actual solution
or determining that there is none.

Lazy Neighborhood Search – LNS:

This technique uses the concept of arc-consistency to con-
struct a feasible mapping. It begins by selecting a feasible
mapping for a random node. It then chooses one of its neigh-
bors and finds a feasible mapping for it. It continues growing
the set of mapped nodes by choosing always a neighbor of
the current set and looking for a feasible mapping for it. If
found, this mapping is accepted into the current feasible set.
By growing the feasible set in this fashion, at the end, when
all the nodes of the overlay have been mapped, the mapping
is complete. On the other hand, if at some point it turns out
that there is not a valid mapping for a neighbor node, the
current set is infeasible and the algorithm has to backtrack.
By keeping lists of neighbors for both, the overlay nodes in
the feasible set, and their corresponding mappings in the
infrastructure network, this technique effectively prunes in-
feasible regions of the search space. However, because of
the need of backtracking, the worst case complexity is still
exponential.

3. EVALUATION AND CONCLUSIONS
Experimental evaluation using as hosting infrastructure both
PlanetLab (which is of fixed size), and synthetic network
topologies (much larger than PlanetLab), showed that these
techniques can handle problems of a few thousand nodes size
with running times ranging from a few seconds to a few min-

1 We conducted benchmarks on a 2.4Ghz Pentium Xeon sys-
tem, using PlanetLab as a hosting infrastructure (296 sites)
and configurations of various sizes up to 200 nodes with run-
ning times below 10sec in all cases

utes. This improves both the size and response time with
respect to previously used techniques, although a fair com-
parison is not yet ready, as there is not yet a set standard
benchmarks.

The ECF and RWB techniques proved to be quite effec-
tive for tightly constraint problems, i.e. problems where
the constraints significantly limit the number of candidate
matchings. However, when the constraints are loose (many
candidate mappings per node/link) the filtering technique
is expensive in space (the space requirement is O(n5)), lim-
iting their scalability. On the other hand, the as the LNS
approach does not do filtering and the amount of state in-
formation kept is small, it is very effective in handling prob-
lems with loose constraints, whereas for tightly constraint
problems it has to do a lot more backtracking and it is not
as effective as ECF and RWB. The complementary nature
of these techniques makes them very appropriate for imple-
menting a hybrid solution, first running a pre-computation
step that would determine if the input constraints produce
very few candidates per node, in which case it would pro-
ceed with either the ECF or RWB technique, or otherwise
using the LNS technique.

Additional information, as well as a demonstration of this
project is available at: http://csr.bu.edu/netembed/
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