
Introducing ProtoRINA: A Prototype for
Programming Recursive-Networking Policies

Yuefeng Wang Ibrahim Matta Flavio Esposito∗ John Day
Boston University Boston University Exegy, Inc. Boston University
wyf@bu.edu matta@bu.edu fesposito@exegy.com day@bu.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

Keywords
Future Network, Recursive Networking, RINA, Policy-based
Programming, Experimental Evaluation.

ABSTRACT
ProtoRINA is a user-space prototype of the Recursive In-
terNetwork Architecture. RINA is a new architecture that
builds on the fundamental principle that networking is inter-
process communication. As a consequence, RINA overcomes
inherent weaknesses of the current Internet, e.g., security,
mobility support, and manageability. ProtoRINA serves not
only as a prototype that demonstrates the advantages of
RINA, but also as a network experimental tool that enables
users to program different policies using its built-in mecha-
nisms. In this note, we introduce ProtoRINA as a vehicle
for making RINA concepts concrete and for encouraging re-
searchers to use and benefit from the prototype.

1. INTRODUCTION
The current Internet has been facing many problems due

to its inherently flawed architecture. Many proposals (new
network protocols and architectures) have attempted to ame-
liorate these problems. Along with these proposals, many
networking tools (e.g., emulators, simulators, experimental
testbeds) have been built to develop, test, and evaluate these
new protocols or architectures before a real world deploy-
ment. Our approach has relied on the fundamental principle
that networking is Inter-Process Communication (IPC) and
only IPC. As a consequence, our Recursive InterNetwork
Architecture (RINA) [1, 2] inherently supports capabilities
such as security, mobility, and manageability. ProtoRINA
is a user-space prototype of RINA.

ProtoRINA is designed based on two main principles: (i)
divide and conquer (recursion), and (ii) separation of mech-
anisms and policies. ProtoRINA provides a framework with
common mechanisms so researchers do not have to imple-
ment these from scratch, rather they can focus on program-
ming different policies (supported by user applications or
network management applications).

ProtoRINA offers several features: (i) ProtoRINA is not
restricted to the Internet Protocol (IP), so it enables exper-
imentation with new control and management applications;
(ii) ProtoRINA supports research not only on user applica-
tions but also network management; (iii) ProtoRINA can be
used as a teaching tool by educators in networking and dis-
tributed systems classes; and (iv) ProtoRINA can be used
to run real experiments both on local-area networks and on

∗F. Esposito’s work was done while at Boston University.

wide-area network testbeds such as GENI [3]. Details of
ProtoRINA, including code and user manual, can be found
in [4].

The rest of this note is organized as follows. Our RINA
architecture is briefly described in Section 2. Some details
of ProtoRINA are presented in Section 3. Section 4 summa-
rizes some experimental results obtained using ProtoRINA.

2. RECURSIVE ARCHITECTURE
RINA is based on the fundamental principle that net-

working is IPC and only IPC. It is part of a more general
model of distributed applications, operating systems, and
networks. A set of distributed application processes, called
a Distributed Application Facility (DAF), cooperate to per-
form some function, e.g., communication service, weather
forecast, genomics, etc. A Distributed IPC Facility (DIF) is
a specialization of a DAF which only provides communica-
tion service. DIFs are specialized to manage a given range
of operation with respect to performance characteristics and
scale. The greater the range of these in a network the more
DIFs that are necessary. In some cases, the scope of these
DIFs increases with increasing rank, so a higher-level DIF
is supported by multiple lower-level DIFs.

Applications request the allocation of communication re-
sources with another application. Resolving the “what” an
application wants to talk to, to the “where it is” is done
by a Flow Allocator. Addresses within each DIF are not
exposed to applications, and there are no well-known ports.
One implication of the IPC model is that the application
name space can have greater scope than any one DIF and
hence a global address space is not required.

RINA separates mechanisms and policies. For example,
IPC processes all use the same mechanisms but may use dif-
ferent policies in different DIFs with different scopes. Also
RINA simplifies the network system by only using two policy-
configurable protocols. The Common Distributed Applica-
tion Protocol (CDAP) is the only application protocol re-
quired, and is also used for network management. The Error
and Flow Control Protocol (EFCP) is used for data transfer.

3. PROTORINA: A PROTOTYPE OF RINA
ProtoRINA Version 1.0 has been tested on our Boston

University campus network and on the GENI testbed, and
we have done some preliminary cross-debugging with other
RINA prototypes [5, 6]. The current version consists of
around 55,000 lines of Java code following the RINA spec-
ifications of January 2013. This version is not a complete
implementation of RINA and we continue to modify and add
elements.

3.1 RINA Node
In ProtoRINA, a RINA node is a host (or machine) where

application processes and IPC processes reside. As shown in
Figure 1, application processes or high-level IPC processes
communicate with their peers using the communication ser-
vice provided by underlying low-level IPC processes, which
act as points of attachment. The mapping from an appli-
cation process (or high-level IPC process) to the lower level
IPC process is resolved by the underlying DIF.

Application Process

…

IPC Process (N Level)

IPC Process (N-1 Level)

Virtual Link (Wire) Manager

IPC
API

DAF

N Level
DIF

N-1 Level
DIF

Shim Layer

IPC
API

IPC Process (0 Level)

IPC
API

0 Level
DIF

IPC
API

Figure 1: RINA Node

Physical connectivities between IPC processes in level-0
DIFs are emulated by TCP connections via a shim layer that
exposes a RINA API. The shim layer includes functionalities
such as resolving a user-defined level-0 IPC process name to
an IP address and a port number. More generally, using
the shim layer enables building RINA overlays on top of
Ethernet, TCP, or UDP.

3.2 RINA Components and APIs

RIB
Daemon

RIB

IPC Resource
Manager (IRM)

Management
Application Entity

Routing
Daemon

Flow
Allocator

RIB
Daemon

API

IRM
API

IPC
API

IPC Process

IPC
API

Error and Flow
Control Protocol

(EFCP)

Relay and
Multiplexing

(RMT)

Data Transfer
Application Entity

RIB
Daemon

API

RIB
API

RIB
Daemon

API

IRM
API

IRM
API

Figure 2: IPC Process

Figure 2 illustrates how different components of an IPC
process interact with other components through RINA APIs.
ProtoRINA provides users with two RINA APIs: RIB Dae-
mon API and IRM API. Users can develop new applications
or define new network management policies using these two
RINA APIs.

Each application (or IPC) process has a Resource Infor-
mation Base (RIB) that stores its view of the information
related to the operation of the DAF (or DIF). The RIB
Daemon API is used to access information stored in the lo-
cal RIB or in a remote application (or IPC) process’ RIB
through CDAP messages. The RIB Daemon is based on
a publish/subscribe model, and it provides timely informa-
tion to the layer management (application) tasks of the DIF
(DAF). The IRM API is used by an application (or IPC)
process to allocate and maintain the connections to its peers.
More details of ProtoRINA components and RINA APIs can
be found in [4].

3.3 Configuration and Policies
In this prototype, each RINA node has a configuration

file that includes the information of all processes (applica-
tion processes and IPC processes) residing on it. This infor-
mation includes process’ naming information and location
of its configuration file. When a RINA node is initialized,
IPC processes and application processes on the node are
bootstrapped based on their own configuration files. The
configuration file includes information on the process’ un-
derlying DIF, routing policies, and so on. Users can define
other properties in the configuration file for their own appli-
cations.

Users can specify different policies in ProtoRINA config-
uration files. The following is a portion of an IPC process’
configuration file. In this example, the enrollment of a new
IPC member into the DIF requires it to provide user and
password information, and the IPC process is instantiated
to use a link-state routing protocol where link-state updates
are sent to neighbor processes every 10 seconds, and the
path cost is calculated using hop count.

r ina . enro l lment . authenPol icy = AUTHPASSWD
r ina . rout ing . p ro to co l = l i nkS t a t e
r ina . routingEntrySubUpdatePeriod = 10
r ina . l inkCost . po l i c y = hop

ProtoRINA has policy holders where users can also define
their own policies using the given RINA APIs.

4. RESULTS OBTAINED USING PROTORINA
We have been using ProtoRINA to demonstrate the RINA

architecture and its advantages, and also to experiment with
different policies. In [7] we demonstrate RINA over the
GENI testbed with two fundamental experiments: DIF en-
rollment and dynamic DIF formation. We also show how
RINA naturally supports the provision of a virtual private
cloud service in [8]. In [9] we use ProtoRINA on GENI to
experiment with different routing policies configured over
different DIF topologies.

5. ACKNOWLEDGEMENT
We would like to thank the National Science Foundation

(NSF grant CNS-0963974), the GENI Project Office (CNS-
1346688), and also Lou Chitkushev and other members of
the RINA team for their support.

6. REFERENCES
[1] Boston University RINA Lab. http://csr.bu.edu/rina.

[2] J. Day, I. Matta, and K. Mattar. Networking is IPC: A
Guiding Principle to a Better Internet. In Proceedings of
CoNEXT/ReArch, New York, NY, 2008.

[3] GENI. www.geni.net.
[4] ProtoRINA. http://csr.bu.edu/rina/protorina.

[5] The IRATI Project. http://irati.eu.
[6] TRIA Network Systems. www.trianetworksystems.com.

[7] Y. Wang, F. Esposito, and I. Matta. Demonstrating RINA
Using the GENI Testbed. In Proceedings of the 2nd GENI
Research and Educational Experiment Workshop (GREE),
Salt Lake City, UT, March 2013.

[8] F. Esposito, Y. Wang, I. Matta, and J. Day. Dynamic Layer
Instantiation as a Service. In Demo at the 10th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), Lombard, IL, April 2013.

[9] Y. Wang, I. Matta, and N. Akhtar. Experimenting with
Routing Policies Using ProtoRINA over GENI. In
Proceedings of the 3rd GENI Research and Educational
Experiment Workshop (GREE), Atlanta, GA, March 2014.

