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Chapter 1

Introduction

The lack of a complete Internet architecture continues to dramatically increase the management costs and complexity of all

distributed systems. For example, (1) supporting mobile devices (nodes), that change their network connection as they move,

has been problematic because of a deficient addressing structure that identifies a node with a particular network connection;

(2) distinguishing applications with public static identifiers make them exposed and vulnerable to attacks; and (3) treating the

whole Internet as a single homogeneous network that exposes a rudimentary “best-effort” delivery service makes it impossible

to fully exploit advanced capabilities of new network technologies.

Fundamentally, the problem with the current Internet architecture is that a layer expects a certain level of service from

the underlying layer, but the underlying layer may not meet that requirement. This inability of layers to communicate what

service is needed, together with the desire to offer virtualized network services, have compounded existing network service

management challenges. These problems are unique to the Internet and are not found in other network architectures of the

past, such as CYCLADES [1], XNS [2], DECNET [3], or OSI [4]. In response to such challenges, the research community

has directed significant efforts and resources toward clean slate architecture design [5, 6, 7, 8]. We contribute to the efforts of

redesigning the Internet with a Recursive InterNetwork Architecture (RINA) [9].

RINA is based on the fundamental principle that networking is Inter-Process Communication (IPC). RINA recurses the

IPC service over different scopes. Specifically, a scope defines a Distributed IPC Facility (DIF) comprised of the set of IPC

processes, possibly running on different machines, that collaboratively provide a set of well-defined flow services to upper

application processes. The mechanisms within each IPC process are the same but each DIF layer is instantiated using a possibly

different set of policies.

Following the handbook of RINA specification [10], we implemented a prototype, whose code is available at [12]. The

prototype is tested on our BU campus network, and cross-debugged with two other RINA prototypes (IRATI [13] and TRIA

[14]). Also we have demonstrated our prototype on the GENI testbed [15]. This document presents a programmer manual

and a user manual for the prototype. We have been adding new components to our prototype for over two years. The current

version [12] resulted in about 50, 000 lines of Java code, excluding support libraries, test applications, and configuration files.

This manual provides details of the software architecture of our prototype, and guides users on how to use existing policies, and

write new networking applications leveraging the provided mechanisms. It should be noted that RINA (both here and elsewhere

[13, 14]) is still “in progress.” This implementation does not yet fully interwork with the other RINA implementations and all

are being extended to implement the full complement of the specifications. Modifications should be expected.

After reading the manual, programmers should know how to create new or modify existing configuration files, and how to

add new policies using the existing interfaces. We hope that with this effort, the networking and distributed system communities

will actively benefit from the principles proposed by the RINA architecture, developing new applications by leveraging our

released prototype.

In Chapter 2 we review some of the key and most recent representative tools, and explain the contributions of our released

RINA prototype in context. In Chapter 3 we give a brief design overview of the main RINA architecture components and

mechanisms, while in Chapter 4 we describe the details of our prototype implementation. In Chapter 5, we walk-through

a researcher on how to edit the RINA configuration file. We also describe how a research would write their own application

leveraging our API and our publish/subscribe mechanism. As an example of how to set up a RINA application, we then describe

how to reproduce a video streaming demonstration using the service provided by a DIF. We then conclude this manual with

instructions on how to add additional management policies to RINA. In particular, we focus on authentication, routing and

addressing policies in Chapter 6.
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Chapter 2

Related Work

The networking and distributed system community is becoming skeptical of the significance of research results based solely

on simulations. This fostered extensive research oriented towards networked simulation, emulation, and prototype tools, in

order to help perform realistic but reproducible (wide-area) network experiments. These tools can be classified into simulators,

emulators, simulators with emulated interfaces, and experimental protocols with interfaces for rapid prototyping.

2.1 Existing Network Experimental Tools

Mininet is an open-source network emulator [21], developed to foster rapid prototyping in the context of Software-Defined

Networking (SDN). With the help of the Mininet API, researchers can test their own protocols or architectures on emulated

virtual graphs. It is possible in fact to create realistic virtual networks with hosts, switches, routers and links, reserving virtual

node and link capacity. All virtual networks are contained into a single hosting machine, and each Mininet virtual node can

run real (Linux) applications such as ping, traceroute or iperf [22]. Mininet enables experimenters to customize their

network graph, including CPU and bandwidth constraints on the virtual nodes and links, and allows multiple developers to

work on the same graph at the same time. Mininet also supports OpenFlow [28] switches for customized routing and SDN

applications. One of the most valuable features of Mininet is however its support for standard Linux network API, and its

Command Programming Interface (CLI), a Python API for rapid network creation and experimentation.

As Mininet, our prototype also provides an interface for rapid networked application prototyping, but without limiting the

scopes of the experiments to a single physical machine. RINA experiments can run on real networks, for example within the

GENI testbed [33], an it is currently running on other testbeds in Europe [13] and over the internet, as long as there is connec-

tivity among the prototype nodes.

Click is an open-source (both user- and kernel-space) tool that can be leveraged to build software for programmable and

configurable routers [23]. Click configurations are modular and easy to extend, thus providing a flexible platform for network

protocol development, testing and deployment. A Click router is composed of packet processing modules called elements.

Such elements enable a fine-grained control over the forwarding path. A Click router configuration is a directed graph that use

such elements as vertices. Each element implements a simple router function. A possible path of packets is represented by

connections between pairs of elements, and packets flowing along the edges of such graph. The Click implementation supports

different packet scheduling and dropping policies, several queuing policies, and other packet processing applications [24].

Our RINA prototype has been released as a rapid prototyping tool as Click, but our focus is not limited to a single router.

Applications built using our prototype may use the Linux system architecture but the current version does not support kernel

functionalities. The RINA community is currently building a kernel prototype of the architecture [13].

Network Simulator (ns-3) advertises itself as an open source discrete event network simulator, which allows studying Internet

protocols and large-scale systems in a controlled environment for research and educational purposes [17]. Unfortunately ns-3

is not backwards-compatible with its widely diffused predecessor ns-2 [16]. Ns-3 design focus has been on improving the core

architecture of ns-2, enabling integration with other software for both research and educational applications. Ns-3 maintains

an extensible software core, and has a flexible tracing system. Its implementation supports interfaces such as sockets API, and

Linux device driver interface. It also supports better software integration than ns-2, allowing integration with other open source

tools and models. For example, ns-3 has an interface to the Click modular router [24], and an interface to OpenFlow [28, 29]
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to allow the simulation of virtual routers and switches. Ns-3 supports two modes of integration with real systems: (1) virtual

machines running on top of ns-3 communication channels, and (2) an ns-3 stack over real devices.

We share ns-3 design goal of releasing a tool valid for both research and teaching purposes, but ours is not a simulation

tool. Moreover, our design goal has been to ferret out fundamental principles and understand their implications for network

architecture, not an improvement of a previous version of the tool. Also, our RINA prototype currently does not support any

integration with existing tools like Click or Openflow.

Optimized Network Engineering Tools (OPNET) is a commercial network simulator that provides a virtual network envi-

ronment able to model an complete network, including hosts, routers, switches, protocols, and applications [25]. OPNET is a

commercial software, but is free to qualifying universities worldwide for academic research and teaching [26]. OPNET pro-

vides a hierarchical GUI-based editor (network, node and process), and supports discrete event simulation and flow analysis: a

discrete event simulation allows packets and protocol message simulations, and the flow analysis enables modeling steady-state

network behavior. OPNET also provides interfaces for live integration with network system and other simulators [27].

As in OPNET, with our RINA prototype researchers are also able to model a complete network, including hosts and routers.

Our prototype however, does not require (and does not suggest) that users write additional protocols, but merely to instantiate

the policies of existing control and data management mechanisms. Users may write their own applications (objects) and use

our API to operate on their states.

OpenFlow is an open standard which enables researchers to run experimental protocols [28]. It relies on Ethernet switches,

and provides standardized interfaces to add and remove flow entries on switch’s internal flow-table [29]. With OpenFlow,

researchers can run experiments without knowing the internal details of vendor’s network devices. An OpenFlow switch

separates packet forwarding (data plane) and routing decisions (control plane). The data plane still resides on the switch, but

the control plane is moved to a separate (OpenFlow) controller. The OpenFlow switch and controller communicate in user

space through the OpenFlow protocol [28].

As in Openflow, with our RINA prototype researchers can also instantiate policies for the forwarding mechanism, in support

of SDN research, without requiring a centralized controller to inject the forwarding rules 1. With our tool however, researchers

are able to instantiate other (data transfer and management) mechanisms as well, such as routing or authentication. In other

words, with RINA we can define policies for software-defined networks, not merely software-defined switches.

2.2 Unique Features of our RINA Prototype

Our RINA prototype can be used as a network tool enabling researchers to develop and test their own protocols and net-

working applications. Researchers can leverage our API and use the prototype to test the existing supported policies in their

own customized environment, they can add novel policies, or leverage the RINA communication service to write external ap-

plications. Our prototype can also be used as a teaching tool for system undergraduate and graduate classes, to help students

understand basic concepts, or perform advanced research in the field of computer networking and distributed systems.

Customizable Scope: a DIF can be quickly and easily set up and customized by leveraging the provided mechanisms of our

framework. Configurable policies include instantiation of several management mechanisms, e.g. routing or enrollment. None

of the existing simulation and emulation tools enable researchers to test different routing policies in different private networks

(DIFs), each within a given limited scope.

Policy-based Networking: our RINA architecture supports Software Defined Networking (SDN). Users can set up a private

virtual network, merely as a high level DIF or Distributed Application Facility (DAF) (Section 3.1) on top of existing physical

networks (lower level DIFs), and instantiate a variety of mechanisms, rather than just forwarding as in OpenFlow.

Recursion: another feature that makes the RINA architecture unique in the space of testing tools is recursion. The same

mechanisms (e.g. transport, routing, and other management mechanisms) are repeated over different scopes and potentially

instantiated with different policies. Both data and control traffic is aggregated and transferred to lower IPC layers, and each

(private) DIF regulates and allocates resources to user traffic originating from higher-level DIFs or applications.

1Recent research has shown how we might need more than one controller [32].
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Chapter 3

Understanding RINA

The very basic premise of this architecture, yet fresh perspective, is that networking is not a layered set of different functions

but rather a single layer of distributed Inter-Process Communication (IPC) that repeats over different scopes. Each instance of

this repeating IPC layer implements the same functions / mechanisms but policies are tuned to operate over different ranges of

the performance space (e.g., capacity, delay, loss).

As shown in Figure 3.1, Distributed Application Processes (DAPes) communicate via an Inter-Process Communication

(IPC) facility and they can themselves be IPCs (hence the recursion). Since the facility is distributed, we call an instance of

a RINA network a Distributed IPC Facility (DIF), and DIF is a collection of IPC processes providing communication service.

This section is intended to give a brief overview of our RINA architecture.

Application 

Processes

P1 P2 P3

IPC
(sender/receiver)

IPC
(sender/receiver)

IPC
(sender/receiver/relay)

N-level DIF

(N-1)-level 

DIFs

Shared State

Figure 3.1: Example of a RINA Network: RINA has one building block (the DIF layer) that can be composed to form a

higher-level DIF from the services provided by lower-level DIFs. This figure illustrates composition by recursion of the DIF

layer.

3.1 Distributed IPC Facility (DIF) and Distributed Application Facility (DAF)

The DIF is a service building block that can be repeated and composed in layers to build wider scoped services that meet

user requirements. A DIF can be thought of as a private network and it is different from the traditional definition of layer

in the Transmission Control Protocol/Internet Protocol (TCP/IP) architecture. First, a DIF does not perform a single function

or small subset of pre-determined functions, but a coordinated set of policy managed functions to achieve the desired IPC

service. Second, the DIF naturally separates various concerns, including operation over different time scales (e.g. short-term

data transfer and multiplexing versus long-term connection management and access control issues).

More generally, we call a set of Distributed Application Processes (DAPes) cooperating to perform a certain function a

Distributed Application Facility (DAF). This function can be communication service, management service or any other service.

A DIF is a specific DAF whose job is only to provide communication service.
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3.2 IPC Architecture and Mechanisms

With the concept of Inter-Process Communication (IPC), the architecture refers to the general model of communicating

processes. However, in this document we use the same term, interchangeably with the term IPC Process, to refer to a specific

implementation of it as well. Each application process that needs to establish a communication flow, has to do it through an

underlying IPC process via a DIF. Each IPC process consists of three distinct sets of tasks dealing with IPC aspects at different

computation timescales (Figure 3.2). These task sets are loosely coupled through a Resource Information Base (RIB), which is

a database in every process, and it stores all the information useful for the management of a DIF or DAF.

These three tasks are as follows:

1. an IPC Data Transfer, which supports relaying (forwarding), multiplexing (scheduling), and per-flow data transfer (com-

putation is simple and therefore fast),

2. an IPC Transfer Control, which implements the error and flow control, and controls the per-flow data transfer parameters,

3. an IPC Management, which implements the Common Distributed Application Protocol (CDAP) to query and update a

RIB for routing, security, resource management, address assignment, and so on (computation is complex and therefore

slow).

ManagementData Transfer ControlData Transfer

Data Unit Protection

Relay and 

Mutiplexing 

Task (RMT)

Delimiting 

Resource 

Information 

Base (RIB)

Common Distributed 

Application Protocol 

(CDAP)

Enrollment

Fast Slower

Computation Timescale 

Routing

Slow

Flow Allocation

Resource Allocation

Data Transfer 

Control Protocol

(DTCP)

Data Transfer

Protocol (DTP)
State

Vector

Figure 3.2: Architecture of an IPC: each IPC process consists of three distinct sets of mechanisms dealing with IPC aspects at

different timescales: IPC data transfer, IPC data control and IPC management.

3.3 Inter-DIF Directory (IDD) Service

The Inter-DIF Directory (IDD) service is an important component of the RINA architecture. It is responsible for naming

management by answering queries via a set of local agents responsible for intra-DIF name resolution. The IDD service is used

by an IPC process or by an application process to locate a service. Such service can be either a DIF providing communication

service, or a DAF providing a certain functionality.

3.4 The Protocols

3.4.1 Common Distributed Application Protocol (CDAP)

The Common Distributed Application Protocol (CDAP), inspired and modeled after CMIP, an object-based standards-

defined protocol [31], is used by communicating RINA applications to exchange any structured application-specific data nec-

essary to coordinate DIFs. CDAP is envisioned to be used in either a request/response mode or a subscribe/publish mode. A
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CDAP entity (Management Application Entity) collects information from other peers in the DIF in response to events (e.g.,

failures) in the network, periodically, or as a matter of policy imposed by its users. Some of these events may involve all

members of the DIF or be more limited in scope.

3.4.2 Error and Flow Control Protocol (EFCP)

The Error and Flow Control Protocol (EFCP) is the data transfer protocol required to maintain an instance of IPC within a

DIF. The functions of this protocol ensure reliability and flow control as required. The original design of the Error and Flow

Control Protocol (EFCP) is modeled after Richard Watson’s Delta-t transmission protocol [34], and includes a Data Transport

Protocol (DTP) and a Data Transport Control Protocol (DTCP).

3.5 Enrollment Procedure

As we mentioned earlier, a DIF consists of a collection of IPC processes. An IPC process has to be enrolled into a DIF by one

existing member in order to communicate with other IPC processes inside the DIF. An enrollment procedure creates, maintains,

distributes (and eventually deletes upon withdrawal) information within a DIF. Such information may include addressing,

access-control rules or other management policies necessary to create instances and characterize a communication. In this

section, we walk through the details of the enrollment procedure.

IPC N+1 IPC 1

IDD 

IPC 2

DIF1

IPC N
……

Figure 3.3: IPC N+1 wants to join DIF1 which contains N IPC processes.

We model a case in which a DIF, DIF 1 is formed by N IPC processes, and another IPC N+1 enrolls to join DIF 1. The

enrollment procedure starts with an IPC N+1 request for DIF 1 to the IDD process. When the IDD process receives such

request, a database lookup returns a list of IPC processes, together with their supporting DIF information (Figure 3.3).

When IPC N+1 obtains the reply, it learns that IPC 1 is the only reachable member of DIF 1, based on the supporting DIF

information. This means that IPC N+1 and IPC 1 share a supporting (underlying) DIF. Only after this discovery operation, IPC

N+1 can send an M CONNECT message containing some authentication information to IPC 1. If the received authentication

information is valid, IPC1 returns an M CONNECT R with a positive result to IPC N+1. 1 This message informs IPC N+1 that

IPC1 is ready to start the enrollment. IPC N+1 sends an M START to IPC N+1, and after receiving it, IPC 1 replies with an

M START R, which contains a dynamically generated address (private to DIF 1) for the new member IPC N+1.

After obtaining such address, the enroller IPC 1 process sends a sequence of M CREATE messages to IPC N+1 which

contain information about the current members in the DIF and the applications reachable through this DIF. Upon completion,

IPC 1 sends an M STOP to IPC N+1 indicating the termination of all the information required for the enrollment, and IPC N+1

replies with an M STOP R to IPC1. After receiving an M STOP R, IPC 1 sends an M START to IPC N+1 to confirm that the

enrollment procedure is completed. IPC N+1 is now able to operate in DIF 1. Finally, IPC 1 sends an M CREATE message to

other existing IPC processes (IPC 2 . . . IPC N), to inform them about the new enrolled member.

This Enrollment procedure is designed to be used in an environment where IPC Processes might disappear for short periods

of time and reappear, i.e. router crashes. It is expected that other enrollment procedures will be defined for other environments.

1Each CDAP message contains a “result” field, that, if positive, communicates a successful operation on any of the management objects, else an error code.
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Chapter 4

Implementing RINA

4.1 Software Architecture

In this section we present an overview of the main packages comprising the RINA prototype. Logically, we can divide the

software architecture into the following components:

• An Inter-Process Communication (IPC) set of packages, which logically includes:

– An IPC interface and implementation package

– A Resource Information Base (RIB) interface and implementation package

– A RIB Daemon interface and implementation package

– An IPC Resource Manager (IRM) interface and implementation package

– An Application Entity (AE) package, including the Management AE and Data Transfer AE

– A Flow Allocator (FA) interface and implementation package

– A Routing Daemon implementation package

• A message package that supports the implementation of Error and Flow Control Protocol (EFCP) message format, i.e.

Data Transfer Protocol (DTP) and Data Transfer Control Protocol (DTCP), and of Common Distributed Application

Protocol (CDAP)

• An Inter-DIF Directory (IDD) package, external to the architecture of an IPC process but used by IPC processes to locate

application services

• A RINA object package containing all objects used in the current architecture

• A shim layer package where TCP connections are used to emulate physical connectivity

• A Distributed Application Process (DAP) package useful for programmers to understand how to implement their own

applications using the existing code

• A RINA Node package implementing the RINA node process where application processes and IPC processes reside

• An input /output configuration package

We show our software architecture on a RINA node in Figure 4.1, where an application process uses the communication

service provided by an N-level IPC process, and recursively an N-level IPC process uses the communication service provided

by an (N-1)-level IPC process. A TCP shim layer at the bottom emulates physical connectivity.
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Figure 4.1: RINA Node overview.

With the goal of helping programmers navigate through the implementation, speeding up their understanding of our proto-

type, in the rest of this chapter we explain the details of our implementation.

4.2 IPC Related Packages

In this section, we explain details of all packages related to the IPC process.
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4.2.1 IPC Package

(1) IPC Interface

An IPC API is used by an application process to access an IPC process: (1) via the IPC’s Flow Allocator to create and

delete a flow to another application process, via Data Transfer AE to send and receive messages over an existing flow, (2) to

register itself to the underlying DIFs such that it can be reached through the IPC process. Recursively, an N-level IPC process

is seen as an application process which uses an (N-1)-level IPC process’s communication services. Details of the Flow object

are explained in Section 4.5.

IPC Process Interface

public int allocateFlow(Flow flow);

public void deallocateFlow(int portID);

public void send(int portID, byte[] msg) throws Exception;

public byte[] receive(int portID);

public void registerApplication(ApplicationProcessNamingInfo apInfo, FlowInfoQueue flowInfoQueue);

public void deregisterApplication(ApplicationProcessNamingInfo apInfo);

Table 4.1: Java IPC interface provided to application process.

(2) IPC Implementation

When an IPC process is instantiated, it first reads from its configuration file to bootstrap its components based on different

policies. Every IPC process consists of the following components:

(1) Resource Information Base (RIB): this component is responsible for storing all information e.g., routing updates, useful

for the management of a DIF (Section 4.2.2).

(2) RIB Daemon: this component is responsible for managing the information stored in the RIB and its veracity, updating

and making states available to (IPC and application) processes (Section 4.2.3).

(3) IPC Resource Manager (IRM): this component is responsible for managing the use of (N-1)-DIFs to allocate and maintain

the connections between the N-level IPC process and its peer IPC processes within the DIF. Recursively, an N-level IPC’s IRM

uses the (N-1)-level IPC’s API, where a connection at N-level is mapped to an (N-1)-level flow maintained by the (N-1)-level

IPC process’ Flow Allocator (Section 4.2.4).

(4) Management Application Entity (Management AE): this component is responsible for the enrollment of the IPC process

when joining a DIF. It also handles all CDAP messages received from other IPC processes’ management AEs (Section 4.2.5).

(5) Data Transfer Application Entity (Data Transfer AE): this component is responsible for data transfer (implementing

Error and Flow Control Protocol (i.e. EFCP) for each existing flow, and also responsible for the Relay and Multiplexing Task

(RMT) (Section 4.2.5).

(6) Flow Allocator (FA): this component is responsible for the flow allocation API invocation from application processes,

and maintains every flow allocated (Section 4.2.6).

(7) Routing Daemon: this component is responsible for the routing inside the DIF, and it is initiated by the Management

AE after the IPC process is enrolled into a DIF (Section 4.2.7).

4.2.2 RIB Package

Every (IPC and application) process stores all its information inside the Resource Information Base (RIB). Attributes of the

RIB can be created, read or written through the RIB interface. When some information is needed, it is always retrieved through

the RIB.
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(1) RIB Interface

The RIB interface allows adding/reading/removing an attribute to/from the RIB, and also adding/removing an IPC member

into/from the DIF member list when a new member joins the DIF or an existing member leaves.

RIB Interface

public void addAttribute(String attributeName, Object attribute);

public Object getAttribute(String attributeName);

public void removeAttribute(String attributeName);

public int addMember(String ipcName, String ipcInstance, LinkedList<String> underlyingDIFs);

public void removeMember(int address);

Table 4.2: Java RIB Interface.

(2) RIB Implementation

The attributes of the RIB are stored in a hashed data structure where the key is the attribute name and the value is an Object

class object, to be cast into any Java object when retrieved from the RIB. For convenience, RIB stores all information related to

the members of the DIF separately.

4.2.3 RIB Daemon Package

Every (IPC and application) process has a RIB daemon. Different states of the DIF may need different information that

may be updated with different frequency or upon the occurrence of some event. Based on a Pub/Sub model, the RIB daemon

provides such service. A subscription event is mapped by the RIB daemon which recognizes the objects from their type, and

acts upon different requests with a set of operations on objects in a local or remote RIB.

A local (read/write) operation may consist of a direct access to attributes of objects in a local RIB, while an infrequent and

wide-area operation on remote objects is supported by generating a sequence of CDAP messages to remote (IPC or application)

processes’ RIBs.

(1) RIB Daemon Interface

The RIB Daemon interface allows the creation and deletion of a Pub/Sub event, and retrieving of information through a Sub

event, or publishing information through a Pub event. When a new event is created, an event ID is returned to the subscriber.

Details of the SubscriptionEvent object are explained in Section 4.5.

RIB Daemon Interface

public int createEvent(SubscriptionEvent subscriptionEvent);

public void deleteEvent(int subscriptionID);

public Object readSub(int subID);

public void writePub(int pubID, byte[] obj);

Table 4.3: Java RIB Daemon Interface.

(2) RIB Daemon Implementation

The RIB daemon maintains all subscription events, including Sub events and Pub events. For each subscription event, the

RIB daemon creates a corresponding event handler (defined in rina.ribDaemon.util/EventHandler.java) which

is responsible for updating the event. For each Sub event to remote processes’ RIBs, the event handler translates the event to a

CDAP message (M CREATE), which contains a subscription event object and sends it to the remote process’s management

AE. For each Pub event, the event handler creates a publisher (defined in rina.ribDaemon.util/Publisher.java)

to periodically publish information to its subscribers.
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When a Management AE receives a Sub object from another process, it adds the sender to the subscriber list of a predefined

Pub event (if any). When a Management AE receives a Pub object from another process, it updates the corresponding Sub

event.

4.2.4 IPC Resource Manager (IRM) Package

On behalf on the application process or N-level IPC process, the IPC Resource Manager (IRM) component manages the

use of the (N-1)-DIFs to allocate and maintain the connections between the N-level IPC process and its peer IPC processes

inside the DIF, or the connections between the Application Process and its peer Application Processes inside the Distributed

Application Facility (DAF).

(1) IRM Interface

The IRM interface allows for allocating/deallocating a connection, or sending/receiving data over an existing connection.

When a new connection is created, a handle ID is returned to the caller, then the handle ID is used to send and receive data.

IRM Interface

public int allocateFlow(Flow flow)

public void deallocateFlow(int handleID);

public void send(int handleID, byte[] msg) throws Exception;

public byte[] receive(int handleID);

Table 4.4: Java IRM Interface.

(2) IRM Implementation

Each DIF-0 IPC process’s IRM has a component called WireManager (defined in rina.irm.util/WireManager)

which manages the use of the physical wires, and DIF-0 connections are mapped on physical wires. When the allocateFlow

method is called, the IRM uses WireManager to set up the DIF-0 connections over the wire. The handle returned by the

allocateFlow method corresponds to a wire and port number on this wire. In our current implementation, the wires are emulated

by TCP connections, so for DIF-0 IPC processes, their underlying DIF is the TCP shim layer (Section 4.6). The WireManager

directs all method calls from IRM to the TCP Flow Manager (defined in rina.tcp/TCPFlowManager).

For non-zero DIF IPC processes and application processes, their underlying supporting DIF is a regular DIF. When the

allocateFlow method is called, the IRM first finds an underlying IPC process, through which the destination process can be

reached, then it uses the IPC interface of the underlying IPC process to allocate a flow. The handle returned by the allocateFlow

method corresponds to an underlying IPC process and a port number on that IPC process. If no such IP underlying IPC process

can be found, a new DIF can be dynamically formed to serve this allocation request.1

IRM maintains all existing connections. It creates a HandleEntry object (defined in rina.irm.util/HandleEntry.java)

for each connection, and the HandleEntry object contains all information about the connection, including handle ID, source

application information, destination application information, underlying IPC process (or wire ID) and port number.

4.2.5 RINA Application Entity Package

Each IPC process has two Application Entities (AE), Management AE (defined in rina.ipc.ae/ManagementAE.java)

and Data Transfer AE (rina.ipc.ae/DataTransferAE.java). An application entity is identified by Application Pro-

cess Name, Application Process Instance, Application Entity Name and Application Entity Instance.

(1) Management Application Entity (AE)

Depending on its configuration file, when an IPC process is initiated, it can be either the first member of a DIF or a

member waiting to join a DIF. The Management AE is responsible for the enrollment of the IPC process when joining a DIF.

1See Appendix A for details about the flow allocation.
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The Management AE is able to enroll new IPC processes into the DIF by attaching a Management AE Handler (defined in

rina.ipc.ae/ManagementAEHandler.java) to each new IPC member.

The Management AE Handler handles all CDAP messages received from other IPC processes’ Management AEs. Also

when an application is using this IPC process as an underlying IPC, the Management AE registers this application by sending

registration information to every member inside the DIF, so that every IPC process in the DIF becomes aware that the application

is reachable through itself. The Routing Daemon (Section 4.2.7), which is responsible for the routing inside the DIF, is started

once the IPC process joins a DIF.

(2) Data Transfer Application Entity (AE)

The Data transfer AE is responsible for data transfer for each existing flow, and the Relay and Multiplexing Task (RMT).

Error and Flow Control Protocol (EFCP) is the protocol for data transfer in RINA architecture, and it includes Data Transfer

Protocol (DTP) and Data Transfer Control Protocol (DTCP). In our current implementation, only a simple version of DTP is

supported, and DTCP is not yet supported.

The Data transfer AE creates a Data Transfer AE handler (defined in rina.ipc.ae/DataTransferAEHandler.java)

for each connection between itself and the other IPC process’s Data transfer AE, and it relays and multiplexes Data Transfer

Protocol (DTP) packets that encapsulate DTP packets or CDAP packets from application processes.

When a DTP packet is received, the Data Transfer AE handler inspects its header information, and it delivers it to the

corresponding application process using this IPC process based on the connection ID if the IPC process is the destination. If

the destination is not itself, it checks the forwarding table and sends the packet to the next-hop toward the destination.

4.2.6 Flow Allocator Package

(1) Flow Allocator Interface

The Flow Allocator (FA) interface is used when an IPC process gets a flow allocate request from an application process

through the IPC Interface or when the IPC process receives a flow allocate request from another IPC process’s flow allocator.

So it can (1) create a flow for an application process using this IPC as underlying IPC, (2) create a flow upon the request from

another IPC process’s flow allocator, (3) delete an existing flow. Details of the Flow object are explained in Section 4.5.

Flow Allocator Interface

public int submitAllocationRequest(Flow flow);

public int receiveAllocationRequest(Flow flow);

public void deallocateFlow(int portID);

Table 4.5: Java Flow Allocator Interface.

(2) Flow Allocator Implementation

An application process talks to other application processes using the communication service provided by underlying IPC

processes, and each IPC process registers the mapping between the application process above and itself within the DIF. This

mapping information is currently flooded inside the DIF, and stored in directory forwarding table in each IPC process’s RIB.

When the Flow Allocator (FA) receives a flow request through the FA interface, it first checks if the request is well informed.

If not, it returns an error to the caller. Otherwise, the FA creates a Flow Allocator Instance (FAI) and passes the flow request

to that instance. FAI is responsible for maintaining the flow during its lifetime. When a FAI is created with a flow request

as input, the FA consults its directory forwarding table to find out which IPC process is bound to the destination application

process. If such IPC process is found, FAI assigns a local port ID bound to the application, then sends an M CREATE

message containing the flow object to that IPC process’s Management AE.

When the destination IPC process’s Management AE receives the M CREATE message containing a flow object, the

FA interface is called and a new FAI is created with the request as an input. FAI checks if the destination application process

is accessible or not, based on the access control policy. If so, FAI returns an M CREATE R containing the flow creation

request result to the source IPC process. If the flow creation result is positive, the M CREATE R message also contains the

remote port ID bound for the destination application process. Then the flow is created between the two application processes.
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For each flow request, FA returns a dynamically assigned port ID to the requester, and the port ID is used to send and receive

DTP messages. Also for each flow, FA maintains a flow message queue (defined in rina/util/MessageQueue) used for

RMT purposes. When the deallocateFlow method is called, the flow is removed as well as its corresponding FAI.

4.2.7 Routing Daemon Package

The Routing Daemon (defined in rina.routing/RoutingDaemon.java ) is responsible for the routing inside the

DIF, and it is initiated by the Management AE after the IPC process successfully joins a DIF.

(1) Implementation

In the current version, we support a link state routing protocol. However, we have policy holders where new routing

protocols can be implemented (see Section 6.3 for details). The Routing Daemon reads its routing policy settings (explained in

Section 5.2.4) from the configuration file of the IPC process. The link state routing is implemented based on a Pub/Sub system

provided by the RIB Daemon (Section 4.2.3). Once joining the DIF, the Routing Daemon of each IPC process creates three

PUB events as follows.

S u b s c r i p t i o n E v e n t e v e n t = new S u b s c r i p t i o n E v e n t ( EventType . PUB,

checkNeig h bo r Pe r i o d , ” c h e c k N e i g h b o r A l i v e ” ) ;

t h i s . r ibDaemon . c r e a t e E v e n t ( e v e n t ) ;

S u b s c r i p t i o n E v e n t e v e n t 1 = new S u b s c r i p t i o n E v e n t ( EventType . PUB,

r o u t i n g E n t r y S u b U p d a t e P e r i o d , ” l i n k S t a t e R o u t i n g E n t r y ” ) ;

t h i s . r ibDaemon . c r e a t e E v e n t ( e v e n t 1 ) ;

S u b s c r i p t i o n E v e n t e v e n t 2 = new S u b s c r i p t i o n E v e n t ( EventType . PUB,

r o u t i n g E n t r y S u b U p d a t e P e r i o d , ” l i n k S t a t e R o u t i n g E n t r y N e i g h b o r s R e c e i v e d ” ) ;

t h i s . r ibDaemon . c r e a t e E v e n t ( e v e n t 2 ) ;

Also, for all its direct neighbors, each IPC process’s routing daemon creates three corresponding SUB events.

S u b s c r i p t i o n E v e n t e v e n t = new S u b s c r i p t i o n E v e n t ( EventType . SUB,

checkNeig h bo r Pe r i o d , ” c h e c k N e i g h b o r A l i v e ” , n e i g h b o r ) ;

t h i s . r ibDaemon . c r e a t e E v e n t ( e v e n t ) ;

S u b s c r i p t i o n E v e n t e v e n t 1 = new S u b s c r i p t i o n E v e n t ( EventType . SUB,

r o u t i n g E n t r y S u b U p d a t e P e r i o d , ” l i n k S t a t e R o u t i n g E n t r y ” , n e i g h b o r ) ;

t h i s . r ibDaemon . c r e a t e E v e n t ( e v e n t 1 ) ;

S u b s c r i p t i o n E v e n t e v e n t 2 = new S u b s c r i p t i o n E v e n t ( EventType . SUB,

r o u t i n g E n t r y S u b U p d a t e P e r i o d , ” l i n k S t a t e R o u t i n g E n t r y N e i g h b o r s R e c e i v e d ” , n e i g h b o r ) ;

t h i s . r ibDaemon . c r e a t e E v e n t ( e v e n t 2 ) ;

(2) Pub/Sub Events details

In this section, we explain how the routing information is collected through the above three kinds of Pub/Sub events.

• (A) “checkNeighborAlive” event: when neighbors receive this event update from an IPC process , they mark this IPC pro-

cess as “alive”. For each neighbor, an IPC process attaches a timer (rina.routing.util/CheckNeighborTimerTask),

and if it does not receive “checkNeighborAlive” update for a certain period of time, it marks the neighbor as “dead” and

removes it from its direct neighbor list.

• (B) “linkStateRoutingEntry” event: the IPC process keeps sending its adjacent links’ cost to all its neighbors, so that

neighbors know its link cost information.

• (C) “linkStateRoutingEntryNeighborsReceived” event: the IPC process keeps sending all its link cost information re-

ceived from a neighbor to its other neighbors. So the link cost information of each IPC process is flooded in the whole

DIF.

Through events (B) and (C), once the Routing Daemon collects the link cost information of the whole DIF, it can build the

forwarding table using Dijkstra’s algorithm.
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4.3 RINA Message Package

4.3.1 CDAP Message

The Common Distributed Application Protocol (CDAP) is used by RINA applications to exchange any structured application-

specific data. A CDAP message generator is defined in rina.message/CDAPMessageGenerator.java to generate

CDAP messages which are serialized by Google Protocol Buffers (GPB) [35].

4.3.2 EFCP Message

The Error and Flow Control Protocol (EFCP) includes a Data Transfer Protocol (DTP) and a Data Transfer Control Protocol

(DTCP). In the current version, we only implement DTP, which is used by IPC processes to exchange Protocol Data Units

(PDUs) which carry Service Data Units (SDUs).

The DTP implementation and its message generator are defined in rina.message/DTP.java. DTP is able to take a

DTP message or a CDAP message as its payload. The DTP message is serialized using little endian.

4.4 IDD Package

The IDD (Inter-DIF Directory) is responsible for DIF name and application name resolution. It takes requests for the IDD

Record of a DIF name or application name, finds the record and returns it. For a DIF name, the IDD record contains information

of IPC processes that are responsible for enrolling new members into the DIF. For an application name, the IDD record contains

information of the DIFs and their IPC processes which are able to help reach the application process. IDD can be implemented

either in a distributed way or centralized way. In the current version, we implement IDD in a centralized way, and there is only

one IDD process that is accessible by all (IPC or application) processes.

4.4.1 IDD Implementation

In our current version, the IDD process is reachable by any DIF-0 IPC process through the TCP shim layer (Section 4.6).

The IDD process (defined in rina.idd/IDDProcess.java) keeps listening to a well-known TCP port, and for each client

it creates an IDD Handler thread (defined in rina.idd/IDDHandler.java) to handle all the messages received from that

client. Non DIF-0 IPC processes and application processes communicate with the IDD process using any of their underlying

DIF-0 processes, namely each DIF-0 IPC process provides an IDD communication interface for higher level IPC processes and

application processes. The IDD process has a database which stores information about registered DIFs and applications, so

that it can serve query requests. The information is stored as an IDD record in the database, and the IDD Record is defined in

rina.object.internal/IDDRecord.java.

4.4.2 IDD Message

There are three types of IDD messages: (1) Request, which contains the IDD query; (2) Response, which contains the

returned IDD record; (3) Register, which contains the registration information about a DIF or an application.

A Request message: either contains the applicationNameInfo field or the difName field, corresponding to an application

query or a DIF query. A Response message: could be a reply to a DIF name query and in this case it contains the authentica-

torNameInfo object which includes a list of IPC processes that can enroll new members into the DIF; or it could be a reply to an

application query and in this case it contains the iddResponse object which includes a list of entries containing the DIF name,

IPC process information and names of supporting DIFs, which will help reach the application requested. A Register message:

either to register an application or a DIF. When the IDD receives a Register message, it checks if the registration information

is well formed and if so, it stores it in the IDD database.

4.5 RINA Object Package

This package contains all objects used in the current implementation. Objects carried in CDAP messages exchanged be-

tween processes are serialized using Google Protocol Buffers (GPB) [35]. The GPB proto files for all objects are in the

appendix, where each proto file contains the details of each object.
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4.5.1 Flow Object

In the current implementation, attributes used in the flow object include: source application naming information, source port

ID, source address, source connection end-point ID, destination application naming information, destination port ID, destination

address, destination connection end-point ID. Other attributes, such as quality of service and access control, are not supported

in the current implementation.

4.5.2 Application Naming Information Object

The application naming information object includes four attributes: application process name, application process instance,

application entity name and application entity instance.

4.5.3 Subscription Event Object

In the current implementation, attributes used in the subscription event object includes: event type (Sub/Pub), subscription

ID, subscriber member list, update period, attributes list and attributes values. The SubscriptionEvent object has a

tolerance field which is a relational-expression, and can be used to define more sophisticated subscription events. But in our

current implementation, we do not support this tolerance field, and we will add this support later.

4.5.4 Other Objects

Other objects include: enrollment information object, directory forwarding entry object, DIF member information object,

DIF neighbor list object, link-state routing entry object and IDD message object.

4.6 TCP Shim Layer Package

The TCP shim layer package is responsible for emulating physical connectivity using TCP connections for the level-0

DIFs. Each DIF-0 IPC process listens to one well-known TCP port, and two types of flows (Management and Data Trans-

fer) between each pair of IPC processes are mapped on one single TCP connection. The TCP Flow Manager (defined in

rina.tcp/TCPFlowManager.java) maintains all the TCP connections (emulated wires) between the DIF-0 IPC pro-

cesses, and it is initiated by the IRM when a DIF-0 IPC process is created.

4.6.1 Implementation

In this version, there is only one TCP connection (emulated wire) between each pair of DIF-0 IPC processes. The TCP Flow

Manager initiates all wires based on the settings in the IPC process’s configuration file (Section 5.2.1) when the IPC process

is created. For each IPC process, there is a thread (defined in rina.tcp.util/IncomingCom.java) listening to the

well-known port. When another IPC process asks for a TCP connection through this port, an incoming communication handler

(defined in rina.tcp.util/IncomingComHandler.java) is forked, which then creates a wire listener ( defined in

rina.tcp.util/WireListenerTCP.java) for each TCP connection. The wire listener is responsible for setting up

the management flow or the data transfer flow upon request from the IPC process, and it is also responsible for multiplexing

DIF-0 flows (Management or Data Transfer) onto the single wire. As TCP connections are bidirectional, for each outgoing

TCP connection, a wire listener is also created to serve flow requests for DIF-0 flows.

4.6.2 DNS Process

We implement our own DNS to resolve a named interface to an IP address. The DNS process continuously listens to

a well-known TCP port, and it is reachable by any DIF-0 IPC process through the TCP shim layer. When a DIF-0 IPC

process is created, it registers the mapping between its name and IP address to the DNS process, so that any DIF-0 IPC

process in the emulated physical network is reachable through a TCP connection. For each client, the DNS process (defined in

rina.dns/DNSProcess) creates a DNS handler (defined in rina.dns/DNSHandler) that handles the DNS messages

(Register, Request and Response) received. A DNS message generator is defined in rina.dns/DNSMessage.java to

generate DNS messages which are serialized using GPB.
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4.6.3 TCP Delimiting

Before a message is sent over the TCP connection, it is prepended with a variable-length integer (as varint defined by

Google Protocol Buffers [35]) indicating the length of the message. The format of the variable-length integer is as follows,

where the last byte is required, and other bytes are optional.

[<one-bit value 1><7-bit unsigned integer>] <one-bit value 0><7-bit unsigned integer>.

For each byte, the high-order bits indicates whether there are further bytes to come, and the low-order 7 bits are used to

store the representation of the number in groups of 7 bits.

4.7 DAP Package

The DAP package includes the implementation of a Distributed Application Process (DAP) and its basic components. It

can be extended by users to write their own application.

4.7.1 DAP component

Every Distributed Application Process (DAP) consists of the following components:

(1) Resource Information Base (RIB): this component is responsible for storing all information useful for the management of

a DAF (Section 4.2.2).

(2) RIB Daemon: this component is responsible for managing the information stored in the RIB and its veracity, updating

and making states available to application processes (Section 4.2.3).

(3) IPC Resource Manager (IRM): this component is responsible for managing the use of underlying IPC processes to

allocate and maintain the connections with its peer Distributed Application Processes. It has the same function as that of the

IRM of a non DIF-0 IPC process, as an IPC process can also be seen as an application process. This components is defined in

application.component.impl/IPCManagerImpl.

(4) Management Application Entity (Management AE): this component is responsible for handling all CDAP messages

received from other application processes’ management AE. Such messages include the CDAP messages used by IRM to set up

an application connection, or CDAP messages used during dynamic DIF formation (Section 7.2). This components is defined

in application.ae/DAPManagementAE.

4.7.2 Application-Specific Message Hanlder

Each application process has an application-specific message handler (defined in application.component.util/

RegularHandler.java). It handles application messages exchanged between applications, and determines what to do

based on the function the application performs.

4.8 RINA Node Package

In our RINA implementation, a RINA node (defined in node/Node.java) is a host where application processes and

IPC processes reside. Based on the RINA node configuration file (Section 5.1), application processes and IPC processes are

initialized by the RINA node. Each RINA node has a network management system (NMS), which manages the use of IPC

processes on the RINA node.

4.9 Configuration Package

Each RINA node, application process and IPC process have their own configuration file. A RINA configuration object

(defined in rina.config/RINAConfig.java) is used to read settings from the configuration file when initializing a
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RINA node, application process or IPC process. Also the configuration object allows for dynamic configuration during the

initiation of higher level IPC processes, instead of reading from a file.

The Apache log4j library [36] is used to keep track of the running status of the program. The logging property file

(log4j.properties) specifies how program running information (such as info, debug, error) should be outputted, whether

to the log file or to the console.
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Chapter 5

Using RINA

In this chapter we explain how users can edit configuration files and use the RINA APIs to write their own networking

applications. In the end, we provide a video streaming application as an example.

5.1 RINA Node Configuration

In our RINA implementation, a RINA node is a host where application processes and IPC processes reside. An application

process talks with other application processes using the communication service provided by the IPC processes on the same

RINA node. When running an application, users need to write the configuration file for each RINA node, specifying the

application information and also information of the network management system which manages the use of IPC processes that

may belong to different DIFs.

5.1.1 Network Management System Information

Each RINA node has a network management system, which manages the use of all IPC processes on the node. When a

RINA node is initialized, all IPC processes on the node are also bootstrapped based on their configuration (Section 5.2). The

network management system information includes the properties of each IPC process, such as DIF name, IPC process name

and instance, and the IPC process’s configuration file. As an example of network management system information, consider

the following configuration: the RINA node has two IPC processes (BostonU1 and BostonU2), belonging to DIF1 and DIF2,

respectively.

# f i r s t IPC p r o c e s s p r o p e r t i e s

IPC . 1 . DIF = DIF1

IPC . 1 . name = BostonU

IPC . 1 . i n s t a n c e = 1

IPC . 1 . c o n f i g u r a t i o n F i l e = ipcBosonU1 . p r o p e r t i e s

# second IPC p r o c e s s p r o p e r t i e s

IPC . 2 . DIF = DIF2

IPC . 2 . name = BostonU

IPC . 2 . i n s t a n c e = 2

IPC . 2 . c o n f i g u r a t i o n F i l e = ipcBostonU2 . p r o p e r t i e s

5.1.2 Application Information

Application information includes application name, application instance (optional), service name (optional), and informa-

tion (IPC name and IPC instance) of underlying IPC processes that this application process uses to communicate with other

application processes. Application name and instance together identify an application process. When an application is initial-

ized, it registers the service it provides to the Inter-DIF Directory (IDD) service so that its service can be reached. Users can

also write a separate configuration file for an application process if needed, and use the RINA configuration object (Section 4.9)

to read the settings from the configuration file.
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For example, as shown below, the application process has application name myApp, application instance 1, and it provides

video streaming service. Also it uses two IPC processes (BostonU1 and BostonU2) as its underlying IPC processes.

a p p l i c a t i o n . name = myApp

a p p l i c a t i o n . i n s t a n c e = 1

s e r v i c e . name = v i d e o S t r e a m i n g

# u n d e r l y i n g IPC p r o c e s s i n f o r m a t i o n

# key i s t h e c o n c a t e n a t i o n of IPC Name + IPC I n s t a n c e

u n d e r l y i n g I P C . 1 = BostonU1

u n d e r l y i n g I P C . 2 = BostonU2

Each underlying IPC process registers within the DIF the mapping between itself and the application process using it, such

that when an IPC process’s Flow Allocator (FA) is called to allocate a connection between applications, the FA can resolve the

destination application to an IPC process in the DIF.

5.2 IPC Process Configuration File

Each IPC process has a configuration file. The configuration file specifies the TCP shim layer connectivity (for DIF-0 IPC

process) or underlying DIFs information (for non DIF-0 IPC processes). Also the configuration file specifies IPC process’s

properties, such IPC name and IPC instance (which uniquely identify an IPC process inside a DIF), IPC DIF level, routing

policy, and authentication policy.

5.2.1 TCP Shim Layer Setup

The configuration file for the DIF-0 IPC process specifies the TCP shim layer connectivity, namely, which IPC processes

have a TCP connection (emulated wire) to this IPC process. As mentioned in the TCP shim layer section (Section 4.6), the TCP

Flow Manager is responsible for emulating wires. The following properties are part of the configuration file related to the TCP

shim layer:

#TCP Shim Layer Se tup

n e i g h b o u r . 1 = BostonU2

n e i g h b o u r . 2 = BostonU3

n e i g h b o u r . 3 = BostonU4

The IPC process with the above properties has three neighbors (BostonU2, BostonU3 and BostonU4) , and the value of each

property key is the concatenation of IPC process and IPC instance, for example, the first neighbor’s IPC name is BostonU, and

its IPC instance is 2. If we want to add another IPC process as a neighbor, e.g., (Name: BostonU, Instance: 5), we merely need

to add one line as follows:

n e i g h b o u r . 4 = BostonU5

The IPC configuration file contains also the local TCP port used to listen for incoming connections to set up wires and the

DNS information (including DNS name and its port) as follows:

# l o c a l TCP p o r t

TCPPort = 11112 / / t h i s can be any v a l i d p o r t number

# DNS p r o p e r t i e s

r i n a . dns . name = l o c a l h o s t / / t h i s can be any r e a c h a b l e IP a d d r e s s

r i n a . dns . p o r t = 11111 / / t h i s can be any v a l i d p o r t number

When a DIF-0 IPC process is created, it registers the mapping between its name (concatenation of IPC name and IPC instance),

IP address as well local TCP port to DNS so that other IPC process can reach it and set up an emulated wire. Here the value of

rina.dns.name can be an IP address or URL of the machine that hosts the DNS process.

As mentioned in the IDD section (Section 4.4), each DIF-0 IPC process communicates with the IDD process through

the TCP shim layer. The IDD information (IP address or URL and TCP port) is also specified in each DIF-0 IPC process

configuration file as follows:

#RINA IDD i n f o

r i n a . i d d . name = l o c a h o s t / / t h i s can be any r e a c h a b l e IP a d d r e s s

r i n a . i d d . p o r t = 8888 / / t h i s can be any v a l i d p o r t number
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5.2.2 Underlying IPC Processes Properties

As a non DIF-0 IPC process can be seen as an application that only provides communication services, so it talks to other IPC

processes in the same DIF also using communication service provided by lower level DIF IPC processes. So in its configuration

file, we need to specify which underlying IPC processes it uses. This is the same as the configuration of underlying IPC

processes for an application process as in Section 5.1.2.

5.2.3 IPC Process Properties

The configuration file also specifies IPC naming information, including IPC name and IPC instance, as well as the DIF level

as shown below. The IPC process’s name and instance are BostonU and 1, and it is a DIF-0 IPC process.

r i n a . i p c . name = BostonU

r i n a . i p c . i n s t a n c e = 1

r i n a . i p c . l e v e l = 0

An IPC process can be started as a member of a given DIF. To bootstrap this case, an IPC process needs to be initiated as

the first member in the DIF with the following lines, which define the IPC process as enrolled in a DIF with DIF name myDIF.

The address of this IPC process will be initialized based on the internal address policy (Section 5.2.4).

r i n a . d i f . e n r o l l e d = t rue

r i n a . d i f . name = myDIF

If an IPC process is instead initialized not as a part of any DIF, but the user plans to bootstrap its enrollment into a specific

DIF myDIF, the IPC process has to wait to join such DIF, and hence its configuration file has to contain the following lines.

The IPC process’s internal RINA address will be assigned by the enroller based on the internal address policy (Section 5.2.4).

r i n a . d i f . e n r o l l e d = f a l s e

r i n a . d i f . name = myDIF

The IPC process gets the enroller’s information from IDD by sending an IDD query with DIF name. Also we can also

manually set the enroller’s information for an IPC process, and IPC process don’t have to query IDD. As shown below, the IPC

process will be enrolled by IPC process whose name is BostonU and instance is 2.

r i n a . a u t h e n t i c a t o r . apName = BostonU

r i n a . a u t h e n t i c a t o r . a p I n s t a n c e = 2

For all DIF-0 IPC processes, we manually set its underlying DIF information (TCP shim layer configuration) as follows:

r i n a . u n d e r l y i n g D I F . name . 1 = wire1

r i n a . u n d e r l y i n g D I F . name . 2 = wire2

This information is used by the enroller during the enrollment procedure to determine which of the IPC processes that

already joined the DIF is the new member’s neighbor: if two IPC processes have a same underlying DIF, then these two IPC

processes are direct neighbors. This underlying DIF information is mainly used by the routing daemon of the IPC process to

collect routing information (Section 4.2.7).

5.2.4 IPC Process Policies

In this section, we explain the configuration setting of different policies for the IPC processes. The policies supported with

this implementation version include, authentication, internal addressing policy, and routing policy.

(1) Authentication Policy

During the enrollment procedure, some authentication information is optionally required by the enroller IPC process. The

following lines in the configuration file specify that the authentication needs username and password.

r i n a . e n r o l l m e n t . a u t h e n P o l i c y = AUTH PASSWD

r i n a . i p c . userName = BUuser

r i n a . i p c . passWord = BUpwd
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After joining the DIF, an IPC process gets the authentication policy from the enroller, and uses such assigned policy to enroll

new members in the future. Other authentication polices might include, for example, RSA or SSH. Our current implementation

only supports username and password, or no authentication. The setting for no authentication can be specified as follows:

r i n a . e n r o l l m e n t . a u t h e n P o l i c y = AUTH NONE

(2) Internal Addressing Policy

When an IPC process is the first member of a certain DIF, it is bootstrapped with an internal private address assigned by

itself. When an IPC process enrolls a new member into the DIF, it assigns an internal RINA address to the new member. The

addressing policy specifies how the address is generated. Each private address can be randomly generated, and if the address

generated is not used then it is assigned to the new member, otherwise another address is generated. The address might follow

a certain scheme. The following is an example of using the random addressing policy.

r i n a . a d d r e s s . p o l i c y = RANDOM

For simplicity and also to make the experiment repeatable, users can also manually set the internal address for IPC processes

in their configuration files as long as there is no conflict.

(3) Routing policy

The Routing Daemon (Section 4.2.7) is responsible for routing inside the DIF. For example, as shown below, the IPC

process uses link-state routing, it sends routing updates to its neighbors every 2 seconds, and checks whether its neighbor is

alive every second. The link cost is calculated using hop count.

# r o u t i n g r e l a t e d p r o p e r t i e s

r i n a . r o u t i n g . p r o t o c o l = l i n k S t a t e / / r o u t i n g p o l i c y

r i n a . r o u t i n g E n t r y S u b U p d a t e P e r i o d = 2 / / u n i t : s econd

r i n a . c h e c k N e i g h b o r P e r i o d = 1 / / u n i t : s econd

r i n a . l i n k C o s t . p o l i c y = hop / / c o u n t s

5.3 Writing Your Own Application

In this section, we explain how users can write their own applications using APIs provided in our RINA implementation,

and also how to support more RIB Daemon Pub/Sub events in case applications need them.

5.3.1 RINA APIs

In this part, we explain three sets of RINA APIs that can be used to write an application.

(1) RIB Daemon API

The RIB Daemon API (Table 5.1) is used to retrieve information from the either local RIB or a remote application process’s

RIB.

RIB Daemon Interface

public int createEvent(SubscriptionEvent subscriptionEvent);

public void deleteEvent(int subscriptionID);

public Object readSub(int subID);

public void writePub(int pubID, byte[] obj);

Table 5.1: Java RIB Daemon Interface.
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For example, if we want to create a Pub event with attribute name attribute1, and update period of 3 seconds, we first create

a SubscriptionEvent object 1(defined in rina.object.internal/SubscriptionEvent.java) as follows:

S u b s c r i p t i o n E v e n t e v e n t = new S u b s c r i p t i o n E v e n t ( EventType . PUB, 3 , ” a t t r i b u t e 1 ” ) ;

then use the createEvent API to create this Pub event as follows, which returns the event ID pubID:

i n t pubID = ribDaemon . c r e a t e E v e n t ( e v e n t ) ;

To publish the content (in bytes), we use the writePub API along with the pubID as follows:

ribDaemon . w r i t e P u b ( pubID , o b j e c t ) ;

If another application process wants to subscribe to the Pub event above, and assuming the publisher application name is

app1, we first create a SubscriptionEvent object as follows:

S u b s c r i p t i o n E v e n t e v e n t = new S u b s c r i p t i o n E v e n t ( EventType . SUB, 3 , ” a t t r i b u t e 1 ” ) ;

then use the createEvent API to create this Sub event as follows, which returns the event ID subID:

i n t subID = ribDaemon . c r e a t e E v e n t ( e v e n t ) ;

To retrieve information from this Sub event, we use the readSub API and store information published into an object as

follows:

O b j e c t o b j e c t = ribDaemon . readSub ( subID )

The set of Pub/Sub events need to be predefined in the RIB Daemon so they it can be used. Details of defining a new set of

Pub/Sub events are explained in Section 5.3.2.

(2) IRM API

The IRM API (Table 5.2) is used to create connections between application processes via underlying supporting DIFs.

IRM Interface

public int allocateFlow(Flow flow);

public void deallocateFlow(int handleID);

public void send(int handleID, byte[] msg) throws Exception;

public byte[] receive(int handleID);

Table 5.2: Java IRM Interface.

Let us assume that an application process (with application name: app and application instance: 1) wants to create a

connection to another application process (with application name: app and application instance: 2). First we need to establish

a flow, and we do so by creating a Flow object (defined in rina.object.internal/Flow.java) as follows:

Flow f low = new Flow ( ” app ” , ” 1 ” , ” app ” , ” 2” ) ;

then we use the allocateFlow API that returns a handleID used to send and receive messages:

i n t hand le ID = irm . a l l o c a t e F l o w ( f low ) ;

To send a message with byte value msgSend through this connection, the send API is used as follows:

i rm . send ( handleID , msgSend ) ;

To receive a message through this connection, the receive API is used as follows:

byte [ ] msgRecv = irm . r e c e i v e ( hand le ID ) ;

1The SubscriptionEvent object has a tolerance field which is a relational-expression, and the tolerance field can define more sophisticated events,

for example when the desired value is bigger than a certain threshold. But in our current implementation, we do not support this tolerance field, and we will

add this support later.
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To remove this connection, the deallocateFlow method is used as follows:

i rm . d e a l l o c a t e F l o w ( hand le ID ) ;

(3) Application Registration API

The application registration API (Table 5.3) is used by an application to register the service it provides to the Inter-DIF

Directory (IDD) service so that it can be found by other application processes.

Application Registration Interface

public void registerServiceToIDD(String serviceName);

public void unregisterServiceFromIDD(String serviceName);

Table 5.3: Java Application Registration Interface.

Users can write their own application by extending the Application class defined in application/Application.

java. For example, if an application process provides relay service to another application (with application name: app and

application instance: 1) , the registerServiceToIDD API is used as follows:

r e g i s t e r S e r v i c e T o I D D ( ” re layApp1 ” ) ;

If the application stops providing this service, the unregisterServiceFromIDD API is used as follows:

u n r e g i s t e r S e r v i c e F r o m I D D ( ” re layApp1 ” ) ;

5.3.2 Defining New Pub/Sub Events

In this section, we explain how to define a new set of Pub/Sub event in the RIB Daemon. We assume that the new

event’s attribute name is “newAttribute”. In the package rina.ribDaemon.util, first modify the following method in the

Publisher.java file,

p r i v a t e vo id upda tePubValue ( )

and add the following code, specifying the byte array value that the publisher wants to publish to the subscribers in the new

event:

e l s e i f ( t h i s . a t t r i b u t e s . e q u a l s ( ” n e w A t t r i b u t e ” ) )

{
/ / n e w A t t r i b u t e s u p p o r t i n g code here

}

Next modify the following method in the EventHandler.java file,

p u b l i c vo id upda teSubE ven t ( byte [ ] v a l u e )

and add the following code, specifying how the Sub event value is updated when a subscriber receives an update from the

publisher:

e l s e i f ( t h i s . a t t r i b u t e s . e q u a l s ( ” n e w A t t r i b u t e ” ) )

{
/ / n e w A t t r i b u t e s u p p o r t i n g code here

}

5.4 RINA Video Streaming Application Example

In this section, we show how a video streaming application is set up using our RINA implementation.
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Figure 5.1: Video Streaming Application through proxies using RINA communication service.

5.4.1 RINA Video Streaming Application

RINA video streaming application is a streaming proxy that supports Real-Time Streaming Protocol (RTSP), and redirects

all traffic between the media player client and the video streaming server to the communication service provided by the DIF.

As shown in Figure 5.1, the main component of RINA video streaming application consists of a client side proxy and a server

side proxy which are connected via a RINA connection. Clients 1 to N are media player clients that issue RTSP requests to

the client side proxy. The requests go through the underlying channels provided by RINA, and arrive at the server side proxy,

which issues the requests to the actual streaming server on behalf of clients. On each client we run a VLC media player [38],

and the server uses Live555 Streaming Media Server [39] to stream videos.

In out prototype, we include video streaming related java files in the video package. The server side proxy is de-

fined in video.serverProxy/ServerProxy.java, and the client side proxy is defined in video.clientProxy/

ClientProxy.java. The details of the video streaming application can be found at [37].

5.4.2 RINA Streaming in Action

(1) IPC Process Configuration

The DIF topology underlying the streaming application is shown in Figure 5.2, and consists of five IPC processes. Client

side proxy is using IPC1 as underlying IPC process, and sever side proxy is using IPC3 as underlying IPC process.

IPC2

IPC4

IPC3IPC1

IPC5

 Addr: 111

 Addr: 1  Addr: 11 

 Addr: 121  Addr: 12 

 1

 1

 1  1

 1

Figure 5.2: DIF topology.

In each IPC process’s configuration file, the DNS and IDD information, routing and enrollment policies (including authen-

tication policy and address assignment policy) are as follows. The simple address assignment policy PATTERN1 we use here
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works as follows: assume the enroller’s address is n, and the new member is the mth enrolled member by the enroller, then the

new member’s address is 10×n + m where m < 10.

r i n a . dns . name = csa2 . bu . edu

r i n a . dns . p o r t = 11111

r i n a . i d d . name = csa2 . bu . edu

r i n a . i d d . p o r t = 8888

r i n a . r o u t i n g . p r o t o c o l = l i n k S t a t e

r i n a . r o u t i n g E n t r y S u b U p d a t e P e r i o d = 2

r i n a . c h e c k N e i g h b o r P e r i o d = 2

r i n a . l i n k C o s t . p o l i c y = hop

r i n a . e n r o l l m e n t . a u t h e n P o l i c y = AUTH PASSWD

r i n a . a d d r e s s P o l i c y = PATTERN1

IPC2 is the first member in DIF1, so it is able to enroll new members from the beginning and its internal private address

is set to be 1 by default. IPC1, IPC3, IPC4 and IPC5 then join DIF1 (see Section 5.4.3 for details of how each IPC process

is enrolled). Next we show the settings for each IPC process, and the settings explained above for DNS, IDD, routing and

enrollment polices are not repeated here.

(A) Configuration for IPC2:

r i n a . i p c . l e v e l = 0

r i n a . i p c . name = BostonU

r i n a . i p c . i n s t a n c e = 2

r i n a . d i f . e n r o l l e d = t rue

r i n a . a d d r e s s = 1 / / IPC2 i s t h e f i r s t member i n t h e DIF , here we manual ly s e t IPC2 ’ s a d d r e s s t o 1

r i n a . d i f . name = DIF1

r i n a . i p c . userName = BU

r i n a . i p c . passWord = BU

r i n a . u n d e r l y i n g D I F . name . 1 = wire1

r i n a . u n d e r l y i n g D I F . name . 2 = wire3

TCPPort = 11113

n e i g h b o u r . 1 = BostonU1

n e i g h b o u r . 2 = BostonU5

(B) Configuration for IPC1:

r i n a . i p c . l e v e l = 0

r i n a . i p c . name = BostonU

r i n a . i p c . i n s t a n c e = 1

r i n a . d i f . e n r o l l e d = f a l s e

r i n a . a u t h e n t i c a t o r . apName = BostonU

r i n a . a u t h e n t i c a t o r . a p I n s t a n c e = 2

r i n a . d i f . name = DIF1

r i n a . i p c . userName = BU

r i n a . i p c . passWord = BU

r i n a . u n d e r l y i n g D I F . name . 1 = wire1

r i n a . u n d e r l y i n g D I F . name . 2 = wire2

TCPPort = 11112

n e i g h b o u r . 1 = BostonU2

n e i g h b o u r . 2 = BostonU4

(C) Configuration for IPC3:

r i n a . i p c . l e v e l = 0
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r i n a . i p c . name = BostonU

r i n a . i p c . i n s t a n c e = 3

r i n a . d i f . e n r o l l e d = f a l s e

r i n a . a u t h e n t i c a t o r . apName = BostonU

r i n a . a u t h e n t i c a t o r . a p I n s t a n c e = 5

r i n a . d i f . name = DIF1

r i n a . i p c . userName = BU

r i n a . i p c . passWord = BU

r i n a . u n d e r l y i n g D I F . name . 1 = wire4

r i n a . u n d e r l y i n g D I F . name . 2 = wire5

TCPPort = 11114

n e i g h b o u r . 1 = BostonU4

n e i g h b o u r . 2 = BostonU5

(D) Configuration for IPC4:

r i n a . i p c . l e v e l = 0

r i n a . i p c . name = BostonU

r i n a . i p c . i n s t a n c e = 4

r i n a . d i f . e n r o l l e d = f a l s e

r i n a . a u t h e n t i c a t o r . apName = BostonU

r i n a . a u t h e n t i c a t o r . a p I n s t a n c e = 1

r i n a . d i f . name = DIF1

r i n a . i p c . userName = BU

r i n a . i p c . passWord = BU

r i n a . u n d e r l y i n g D I F . name . 1 = wire2

r i n a . u n d e r l y i n g D I F . name . 2 = wire5

TCPPort = 11115

n e i g h b o u r . 1 = BostonU1

n e i g h b o u r . 2 = BostonU3

(E) Configuration for IPC5:

r i n a . i p c . l e v e l = 0

r i n a . i p c . name = BostonU

r i n a . i p c . i n s t a n c e = 5

r i n a . d i f . e n r o l l e d = f a l s e

r i n a . a u t h e n t i c a t o r . apName = BostonU

r i n a . a u t h e n t i c a t o r . a p I n s t a n c e = 2

r i n a . d i f . name = DIF1

r i n a . i p c . userName = BU

r i n a . i p c . passWord = BU

r i n a . u n d e r l y i n g D I F . name . 1 = wire3

r i n a . u n d e r l y i n g D I F . name . 2 = wire4

TCPPort = 11116

n e i g h b o u r . 1 = BostonU2

n e i g h b o u r . 2 = BostonU3

(2) RINA Nodes Configuration

As shown in Figure 5.3, the client side proxy uses IPC1 as its underlying IPC process, and the server side proxy uses IPC3

as its underlying IPC process. The configuration file for RINA node where the client side proxy resides is as follows, where
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ipcBostonU1.properties is the configuration file for IPC1.

# Network management sys tem i n f o r m a t i o n

IPC . 1 . DIF = DIF1

IPC . 1 . name = BostonU

IPC . 1 . i n s t a n c e = 1

IPC . 1 . c o n f i g u r a t i o n F i l e = ipcBostonU1 . p r o p e r t i e s

# C l i e n t s i d e proxy a p p l i c a t i o n p r o c e s s i n f o r m a t i o n

a p p l i c a t i o n . name = c l i e n t P r o x y

u n d e r l y i n g I P C . 1 = BostonU1

The configuration file for RINA node where the server side proxy resides is as follows, where ipcBostonU3.properties

is the configuration file for IPC3.

# Network management sys tem i n f o r m a t i o n

IPC . 1 . DIF = DIF1

IPC . 1 . name = BostonU

IPC . 1 . i n s t a n c e = 3

IPC . 1 . c o n f i g u r a t i o n F i l e = ipcBostonU3 . p r o p e r t i e s

# S e r v e r s i d e proxy a p p l i c a t i o n p r o c e s s i n f o r m a t i o n

a p p l i c a t i o n . name = s e r v e r P r o x y

u n d e r l y i n g I P C . 1 = BostonU3

There is no application process on the other three RINA nodes where IPC2, IPC4 and IPC5 reside. The configuration files

for RINA node where IPC2 resides is as follows, where ipcBostonU2.properties is the configuration file for IPC2.

# Network management sys tem i n f o r m a t i o n

IPC . 1 . DIF = DIF1

IPC . 1 . name = BostonU

IPC . 1 . i n s t a n c e = 2

IPC . 1 . c o n f i g u r a t i o n F i l e = ipcBostonU2 . p r o p e r t i e s

The configuration file for RINA node where IPC4 resides is as follows, where ipcBostonU4.properties is the

configuration file for IPC4.

# Network management sys tem i n f o r m a t i o n

IPC . 1 . DIF = DIF1

IPC . 1 . name = BostonU

IPC . 1 . i n s t a n c e = 4

IPC . 1 . c o n f i g u r a t i o n F i l e = ipcBostonU4 . p r o p e r t i e s

The configuration file for RINA node where IPC5 resides is as follows, where ipcBostonU5.properties is the

configuration file for IPC5.

# Network management sys tem i n f o r m a t i o n

IPC . 1 . DIF = DIF1

IPC . 1 . name = BostonU

IPC . 1 . i n s t a n c e = 5

IPC . 1 . c o n f i g u r a t i o n F i l e = ipcBostonU5 . p r o p e r t i e s

Each RINA node is boostrapped based on the its configuration file. Once the RINA connection between the client proxy

and server proxy is set up, the client proxy is ready to accept video requests from a media player client for the streaming server.

5.4.3 Video Streaming Demonstration

In this walk-through demonstration, we first start the DNS process and the IDD process. Then start the IPC2 process which

is the first member in the DIF with address 1. Next we start the IPC5 process and which joins the DIF and get assigned address

11 by IPC2 . Then we start the client proxy process which creates the IPC1 process as part of it, so IPC1 joins the DIF and

get assigned address 12 by IPC2 and then client proxy uses IPC1 as its underlying IPC. Next we start IPC4, which joins the

DIF and get assigned address 121 by IPC1. Last we start theserver proxy process which creates the IPC3 process as part of it,

so IPC3 joins the DIF and get assigned address 111 by IPC5, then the server proxy uses IPC3 as its underlying IPC. When all

processes in the DIF are started, after few seconds the Routing Daemon of each IPC process computes the routing table.
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Then the client side proxy creates a RINA connection to the server side proxy using the IRM API’s allocateFlow API. The

connection is mapped to the path IPC1-IPC4-IPC3 within the underlying DIF, since this is the shortest path between IPC1 and

IPC3 as shown in Figure 5.3.

Client
Proxy

Server
Proxy

IPC2

IPC4

IPC3IPC1

IPC5

 Addr: 111

 Addr: 1  Addr: 11 

 Addr: 121  Addr: 12 

 1

 1

 1  1

 1

IPC4

Figure 5.3: Connection between client proxy and server proxy is through IPC4.

Then we let IPC4 go down by stopping the IPC4 process and on the media player side, we can see the video stops for a

moment. The Routing Daemon of each IPC process detects the topology change, and later converges to a new routing table

after few seconds, so the connection now is mapped to another path IPC1-IPC2-IPC5-IPC3 as shown in Figure 5.4. Then on

the media player side, the video resumes playing.

Client
Proxy

Server
Proxy

IPC2

IPC4

IPC3IPC1

IPC5

 Addr: 111

 Addr: 1  Addr: 11 

 Addr: 121  Addr: 12 

 1

 1

 1  1

 1

IPC2 IPC5

 

Figure 5.4: IPC4 is down, then connection between client proxy and server proxy is through IPC2 and IPC5.

Then we let IPC4 returns to the DIF by starting the IPC4 process again. The connection is then re-mapped to the shortest

path IPC1-IPC4-IPC3 as shown in Figure 5.5. When rejoining the DIF, IPC4 is assigned a new address 122 instead of the old

address 121 as it is treated as a new member.
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Figure 5.5: IPC4 is back, then connection between client proxy and server proxy is through IPC4 again.
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Chapter 6

Programming RINA

In this chapter, we explain how programmers can program with RINA and write their own policies using the policy holders

in our implementation.

6.1 Authentication Policy

Currently, we support two kinds of authentication policies: (1) no authentication, and (2) using user name and password.

During the enrollment procedure, an M CONNECT is sent by the IPC process that wants to join the DIF, and it contains the

authentication information, so to add a new authentication policy, we need to modify both sender’s side and receiver’s side of

this M CONNECT message.

On the sender’s side (defined in rina.application.entity/ManagementAE.java), modify the enrollment

method by setting the authTypes t field in the M CONNECT to the new policy and letting the authValue t field carry

the authentication object (see the proto file in the appendix for CDAP message for details) such as RSA keys. Currently,

the authTypes t field is an enum type which can be set to four values AUTH NONE, AUTH PASSWD, AUTH SSHRSA,

AUTH SSHDSA. If the programmer wants to add another policy other than RSA and DSA, the proto file for CDAP message

needs to be modified by adding another enum value for authTypes t, then recompiled by GPB [35] to generate a new CDAP mes-

sage java file, and replace rina.message/CDAP.java. On the receiver’s side (defined in rina.application.entity/

ManagementAEHandler.java), modify the handle M CONNECT method and add the corresponding code which up-

dates the authentication result indicated by variable result.

Once the new authentication policy is added, if users want to use the new policy, they only need to specify in the IPC

process’s configuration file the authentication policy as follows:

r i n a . e n r o l l m e n t . a u t h e n P o l i c y = myNewAuthenPolicy

6.2 Internal Addressing Policy

When an IPC process is the first member of a certain DIF, it is bootstrapped with an internal private address assigned by it-

self. When a new IPC process joins the DIF, it is assigned an internal private RINA address by the enroller. IPC processes use the

internal private address to communicate with other IPC processes in the same DIF. Assume the new addressing policy that the

programmer wants to add is myNewAddressPolicy, the generateRINAAddr method in rina.rib.impl/RIBImpl.java

needs to be modified by adding the corresponding code as follows:
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i f ( a d d r e s s P o l i c y . e q u a l s ( ”RANDOM” ) )

{
. . . . . .

} e l s e i f ( a d d r e s s P o l i c y . e q u a l s ( ”DEFAULT” ) )

{
. . . . . .

} e l s e i f ( a d d r e s s P o l i c y . e q u a l s ( ” myNewAddressPolicy ” ) )

{
/ / Implemen t new p o l i c y here

}

Once the new policy is added, if users want to use the policy, they only need to specify in the IPC process’s configuration

file the addressing policy as follows:

r i n a . a d d r e s s . p o l i c y = myNewAddressPolicy

6.3 Routing Policy

6.3.1 Routing Protocol

In the current version, we support a link state routing protocol, but programmers can implement their own routing protocols.

Assume the new routing policy that the programmer wants to add is “myNewRoutingPolicy ”, the programmer needs to modify

the constructor method in rina.routing/RoutingDaemon.java as follows:

/ / POLICY HOLDER

i f ( t h i s . r o u t i n g P r o t o c o l . e q u a l s ( ” l i n k S t a t e ” ) )

{
t h i s . l i n k S t a t e R o u t i n g I n f o = new L i n k S t a t e R o u t i n g I n f o ( t h i s . r inaAddr , t h i s . f o r w a r d i n g T a b l e ) ;

t h i s . r i b . a d d A t t r i b u t e ( ” l i n k S t a t e R o u t i n g I n f o ” , t h i s . l i n k S t a t e R o u t i n g I n f o ) ;

} e l s e i f ( t h i s . r o u t i n g P r o t o c o l . e q u a l s ( ” myNewRoutingPolicy ” ) )

{
/ / Implemen t new p o l i c y here

}

What’s more, programmers may need to update the RIB Daemon to add more Pub/Sub events (See Section 5.3.2 for details)

which are needed for the new routing protocol. Once the new routing policy is added, if users want to use the new routing

policy, they only need to specify in the IPC process’s configuration file the routing policy as follows:

r i n a . r o u t i n g . p r o t o c o l = myNewRoutingPolicy

6.3.2 Link Cost

Currently our implementation supports only hop count as the link cost. New policies of determining the link cost can also

be implemented for the link state routing. Link cost is determined when an IPC process receives an linkStateRoutingEntry

event update from its neighbors (defined in rina.ribDaemon.util/EventHandler.java). Assume the new policy

programmer wants to add is “myLinkCostPolicy”. In the updateSubEvent method, modify the updating part for linkStateR-

outingEntry as follows:

/ / POLICY HOLDER

i f ( t h i s . l i n k C o s t P o l i c y . e q u a l s ( ” hop ” ) ) / / hop c o u n t i s t h e c o s t

{
c o s t =1 ;

} e l s e i f ( t h i s . l i n k C o s t P o l i c y . e q u a l s ( ” myNewLinkCostPolicy ” ) )

{
/ / Implemen t new l i n k c o s t p o l i c y here

}

Once the new link cost policy is added, if users want to use the new policy, they only need to specify in the configuration

file the link cost policy as follows:

r i n a . l i n k C o s t . p o l i c y = myNewLinkCostPolicy
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Chapter 7

Appendix A: Flow Allocation

In this section, we explain details of different scenarios during the flow allocation between two processes when an IRM

allocateFlow call is invoked (Section 4.2.4).

7.1 Flow Allocation Over An Existing DIF

In this section, we explain how a flow is allocated between two (IPC or application) processes through an existing underlying

DIF. Here we show two cases, in the first case the flow is a one-hop flow in the underlying DIF, and in the second case the flow

is a multi-hop flow.

7.1.1 Case 1

AppA wants to allocate a flow to AppB through an IRM API call. When AppA’s IRM receives the request, it looks up its

RIB, and finds one of its underlying IPC process: IPC1 is able to reach AppB through IPC2 . Then through the IPC API call,

IPC1’s flow allocator gets the request to allocate the flow between AppA and AppB.

In this case, IPC1 and IPC2 are neighbors. An M CREATE message containing the flow request is sent from IPC1’s

Management AE to IPC2’s Management AE over the existing Management flow, and the flow request includes the local port

bound between IPC1 and AppA. When IPC2 receives the request, it asks if AppB agree to create the flow. If AppB agrees, an

M CREATE R containing the local port bound between IPC2 and AppB is returned from IPC2 to IPC1’s Management AE.

Then the flow is created between AppA and AppB.

DIF

IPC 1 

App A App B

IPC 2

Figure 7.1: Flow created between direct neighbors IPC.

7.1.2 Case 2

AppA wants to allocate a flow to AppB through an IRM API call. When AppA’s IRM receives the request, it looks up its

RIB, and finds one of its underlying IPC process: iPC1 is able to reach AppB through IPC3 . Then through the IPC API call,

IPC1’s flow allocator gets the request to allocate the flow between AppA and AppB.
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In this case, IPC1 and IPC3 are not neighbors, but since they are in the same DIF, so they are reachable to each other. IPC1’s

Management AE will send a M CREATE message to IPC2’s Management AE over the Management flow between them first,

then IPC2’s Management AE will relay this CDAP message to IPC3’s Management AE over the Management flow between

them. Similar to case 1, a M CRATER message is sent from IPC3 to IPC1’s Management AE, and the message is also relayed

by IPC2’s Management AE.

DIF

IPC 1 IPC 2

App A App B

IPC 3

Figure 7.2: Flow created between non-neighbors.

7.2 Dynamic DIF Formation

When two (IPC or application) processes try to establish a communication flow, in last two examples, we show when there

are existing common underlying DIF, however if they cannot find a common existing DIF to communicate over a new (higher

level) DIF needs to be dynamically created.

IPC1 IPC2

IPC3

IPC5IPC4

IPC6

Node 5Node 4

Node 3

Node 2

Node 1

App1 App3
App2

IDD Node 6

Figure 7.3: Dynamic DIF Formation: App2 has underlying IPC processes in both DIF1 and DIF2, and uses the Inter-DIF

Directory (IDD) mechanism to register a relay service between them.

We consider three application processes that use two 0-level DIFs, DIF1 and DIF2 to communicate. Each underlying

facility has three IPC processes. In particular, App1 and App3 use IPC1 and IPC5 as underlying IPCs for their communication

in DIF1 and DIF2, respectively, while App2 uses IPC2 and IPC4 for its communications in DIF1 and DIF2 ( Figure 7.3).

App1 wants to establish a flow with App3, and since it cannot find a common underlying DIF, it triggers the Inter-DIF

Directory (IDD) service mechanism and discovers which DIF it needs to join to establish a flow with App3. Previously registered

as relay service for App3, the address of App2 is returned to App1. Then App1 sends an M CREATE message to App2

indicating it wants to allocate a flow to App3. After receiving this message, App2 will initiate new 1-level DIF3 by creating

IPC8 which is the first member in DIF3 and able to enroll new members. Then App2 sends an M CREATE to App3 inviting

App3 to create a new IPC process to join the new created DIF3. After IPC9 created by App3 joins DIF3, App3 sends an

M CREATE R to App2 telling that it is ready to accept flow creation request. Then App2 sends an M CREATE R to
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IPC1 IPC2

IPC3

IPC5IPC4

IPC6DIF1 DIF2
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Node 2

Node 1

App1 App3
App2

IPC7 IPC8 IPC9
DIF3

IPC7 IPC9

IDD Node 6

Figure 7.4: Dynamic DIF Formation: 1-level DIF3 is dynamically formed by App2 upon App1’s request to establish a flow

with App3.

App1 inviting App1 to create a new IPC process to join the new created DIF3. Once IPC7 is created by App1, DIF3 is able to

provide communication service between App1 and App3 (Figure 7.4). Then the flow between App1 and App3 is created similar

to case 2 in section 7.1.
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Chapter 8

Appendix B: Proto files

In order to use the Google Buffer Protocol serialization format, programmers need to specify how they want their infor-

mation to be serialized. As extensively clarified in [35], each protocol buffer message is a small logical record of information,

containing a series of name-value pairs. In this section, we list three proto files used in our implementation, and the rest protos

files can be found in the prototype source code.

8.1 Flow Object

The following is the GPB proto file for the flow object.

package r i n a . o b j e c t . gbp ;

import ” A p p l i c a t i o n P r o c e s s N a m i n g I n f o M e s s a g e . p r o t o ” ;

import ” Q o S S p e c i f i c a t i o n . p r o t o ” ;

import ” P r o p e r t y M e s s a g e . p r o t o ” ;

message c o n n e c t i o n I d t

{ / / i n f o r m a t i o n t o i d e n t i f y a c o n n e c t i o n

o p t i o n a l u i n t 3 2 q o s I d = 1 ;

/ / i d e n t i f i e s t h e QoS cube under which t h i s f l o w i s c l a s s i f i e d

o p t i o n a l u i n t 3 2 sourceCEPId = 2 ;

/ / i d e n t i f i e s t h e s o u r c e c o n n e c t i o n e n d p o i n t ( un ique w i t h i n t h e s o u r c e IPC p r o c e s s )

o p t i o n a l u i n t 3 2 d e s t i n a t i o n C E P I d = 3 ;

/ / i d e n t i f i e s t h e d e s t i n a t i o n c o n n e c t i o n e n d p o i n t ( un ique w i t h i n t h e d e s t i n a t i o n IPC p r o c e s s )

}

message f l o w t

{ / / C o n t a i n s t h e i n f o r m a t i o n t o s e t u p a new f l o w

r e q u i r e d r i n a . m essages . a p p l i c a t i o n P r o c e s s N a m i n g I n f o t sourceNam ingInfo = 1 ;

/ / The naming i n f o r m a t i o n o f t h e s o u r c e a p p l i c a t i o n p r o c e s s

r e q u i r e d r i n a . m essages . a p p l i c a t i o n P r o c e s s N a m i n g I n f o t d e s t i n a t i o n N a m i n g I n f o = 2 ;

/ / The naming i n f o r m a t i o n o f t h e d e s t i n a t i o n a p p l i c a t i o n p r o c e s s

r e q u i r e d u i n t 6 4 s o u r c e P o r t I d = 3 ;

/ / The p o r t i d a l l o c a t e d t o t h i s f l o w by t h e s o u r c e IPC p r o c e s s

o p t i o n a l u i n t 6 4 d e s t i n a t i o n P o r t I d = 4 ;

/ / The p o r t i d a l l o c a t e d t o t h i s f l o w by t h e d e s t i n a t i o n IPC p r o c e s s

r e q u i r e d u i n t 6 4 s o u r c e A d d r e s s = 5 ;

/ / The a d d r e s s o f t h e s o u r c e IPC p r o c e s s f o r t h i s f l o w

o p t i o n a l u i n t 6 4 d e s t i n a t i o n A d d r e s s = 6 ;

/ / The a d d r e s s o f t h e d e s t i n a t i o n IPC p r o c e s s f o r t h i s f l o w

r e p e a t e d c o n n e c t i o n I d t c o n n e c t i o n I d s = 7 ;

/ / The i d e n t i f i e r s o f a l l t h e c o n n e c t i o n s a s s o c i a t e d t o t h i s f l o w

o p t i o n a l u i n t 3 2 c u r r e n t C o n n e c t i o n I d I n d e x = 8 ;

/ / I d e n t i f i e s t h e i n d e x o f t h e c u r r e n t a c t i v e c o n n e c t i o n i n t h e f l o w

o p t i o n a l u i n t 3 2 s t a t e = 9 ;

/ / ?

o p t i o n a l r i n a . m essages . q o s S p e c i f i c a t i o n t q o s P a r a m e t e r s = 1 0 ;

/ / t h e QoS p a r a m e t e r s s p e c i f i e d by t h e a p p l i c a t i o n p r o c e s s t h a t r e q u e s t e d t h i s f l o w

38



r e p e a t e d p r o p e r t y t p o l i c i e s = 1 1 ;

/ / t h e s e t o f p o l i c i e s s e l e c t e d by t h e IPC p r o c e s s

r e p e a t e d p r o p e r t y t p o l i c y P a r e m e t e r s = 1 2 ;

/ / t h e s e t o f p a r a m e t e r s a s s o c i a t e d t o t h e p o l i c i e s

o p t i o n a l b y t e s a c c e s s C o n t r o l = 1 3 ;

/ / ?

o p t i o n a l u i n t 3 2 m a x C r e a t e F l o w R e t r i e s = 1 4 ;

/ / Maximum number o f r e t r i e s t o c r e a t e t h e f l o w b e f o r e g i v i n g up

o p t i o n a l u i n t 3 2 c r e a t e F l o w R e t r i e s = 1 5 ;

/ / The c u r r e n t number o f r e t r i e s

o p t i o n a l u i n t 3 2 hopCount = 1 6 ;

/ / While t h e s e a r c h r u l e s t h a t g e n e r a t e t h e f o r w a r d i n g t a b l e s h o u l d a l l o w f o r a n a t u r a l

t e r m i n a t i o n c o n d i t i o n , i t seems wise t o have t h e means t o e n f o r c e t e r m i n a t i o n

}

8.2 Subscription Event Object

package r i n a . o b j e c t . gpb ;

enum e v e n t T y p e t

{
SUB = 0 ;

PUB = 1 ;

}

enum a c t i o n T y p e t

{
NOTIFY = 0 ;

RECORD = 1 ;

}

message s u b s c r i p t i o n E v e n t t

{ / / C o n t a i n s t h e i n f o r m a t i o n f o r a pub / sub e v e n t

r e q u i r e d e v e n t T y p e t even tT ype = 1 ;

r e p e a t e d s t r i n g a t t r i b u t e L i s t = 2 ;

o p t i o n a l i n t 3 2 s u b s c r i p t i o n I D = 3 ;

o p t i o n a l s t r i n g r e l a t i o n E x p r e s s i o n = 4 ;

o p t i o n a l double t o l e r a n c e = 5 ;

r e p e a t e d s t r i n g memberLis t = 6 ;

o p t i o n a l a c t i o n T y p e t a c t i o n T y p e = 7 ;

o p t i o n a l double u p d a t e P e r i o d = 8 ;

o p t i o n a l b y t e s v a l u e = 9 ;

}

8.3 IDD message

The IDD Message Object is serialized using GPB, and the proto file is defined as below.

package r i n a . o b j e c t . gpb ;

import ” A p p l i c a t i o n P r o c e s s N a m i n g I n f o M e s s a g e . p r o t o ” ;

enum opCode t {
Reques t = 0 ;

Response = 1 ;

R e g i s t e r = 2 ;

}

message i d d R e s p o n s e t {
o p t i o n a l s t r i n g difName = 1 ;

o p t i o n a l r i n a . o b j e c t . gpb . a p p l i c a t i o n P r o c e s s N a m i n g I n f o t i p c P r o c e s s N a m e I n f o = 2 ;

r e p e a t e d s t r i n g support ingDIFNames = 3 ;
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}

message i d d M e s s a g e t {
r e q u i r e d opCode t opCode = 1 ;

o p t i o n a l u i n t 3 2 r e s u l t = 2 ;

o p t i o n a l r i n a . o b j e c t . gpb . a p p l i c a t i o n P r o c e s s N a m i n g I n f o t a p p l i c a t i o n N a m e I n f o = 3 ;

o p t i o n a l u i n t 3 2 hopCount = 4 ;

o p t i o n a l u i n t 6 4 t imeStamp = 5 ;

r e p e a t e d i d d R e s p o n s e t iddResponse = 6 ;

o p t i o n a l s t r i n g difName = 7 ; / / query f o r a u t h e n t i c a t o r o f a c e r t a i n DIF

r e p e a t e d r i n a . o b j e c t . gpb . a p p l i c a t i o n P r o c e s s N a m i n g I n f o t a u t h e n t i c a t o r N a m e I n f o = 8 ;

/ / a l l IPC p r o c e s s e s t h a t can e n r o l l new members

}
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