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Abstract

Management is a vital component for delivering requested

network services. The inability of the current Internet archi-

tecture to accommodate modern requirements has spurred

attempts to provide novel network management solutions.

Existing approaches often restrict the range of policies that

can be employed to adapt to diverse network conditions.

They are also tailored either to a specific set of (manage-

ment) applications, or to the current Internet architecture,

inheriting its shortcomings, for example adopting its incom-

plete (static) addressing architecture or ad-hoc solutions that

result in so-called “layer violations.”

In this paper, we describe a novel management architec-

ture developed from first principles to enable the specifica-

tion of various policies. To this end, we identify common

underlying mechanisms, based on the unifying principle that

any management application consists of processes maintain-

ing and sharing distributed states of information objects for

the purpose of delivering a network service. This principle

underlies our Recursive InterNetwork Architecture (RINA),

where the notion of a “layer” represents such state sharing

among processes and such layers can be repeated over differ-

ent scopes and stacked to provide more effective wide-area

services. We present a management framework that enables

application programmers to specify four types of policies

for managing a layer, the network, the naming of services,

and an application, and use our prototype implementation

to demonstrate adaptation to changing communication and

load requirements.

Categories and Subject Descriptors C.2.1 [Network Ar-

chitecture and Design]: Distributed networks

General Terms Management, Design

Keywords Network management, Network protocols

1. Introduction

The lack of a complete architecture continues to dramati-

cally increase the management costs and complexity of all

distributed systems that are based on a service paradigm.

Service management today must support a collection of pro-

tocols with different scalability and convergence properties,

each tailored to a specific management application. 1

Millions of dollars have been spent in the last five years

on middlebox hardware and maintenance [32]. In response

to modern requirements, e.g. security or mobility, network

and service providers as well as enterprises have adopted

ad hoc solutions, and so-called “layer violations”, where

passing datagrams are deeply inspected so as to perform

application- or transport-specific processing. In-network so-

lutions are often complex (as specific modules need to be

installed and maintained with patches), are limited to for-

warding in IP devices (see e.g. OpenFlow [24]), and lack a

complete management application architecture.

The desire to simplify and better manage a distributed

system in support of modern service requirements and new

revenue models, together with the inability of the current In-

ternet to cope with the modern requirements has recently

fostered research in novel service-based architectures (see

e.g. [10, 19, 26]), and extensible management control plat-

forms (see e.g. [11, 20, 31].) Some of these solutions tar-

get specific problems of the current Internet, e.g. mobility or

multihoming, while others focus on the manageability of dis-

tributed systems [15, 20] or their scalability [11]; yet other

solutions focus on the expressiveness of adaptive-based pro-

tocols that enable systems to tune behaviors of management

applications by policy instantiation [21].

We generalize existing work on service management to

have a complete and general-purpose architecture that in-

cludes the minimal set of mechanisms serving different and

scalable management goals, each implementable with the

simplest possible control platform. In particular, we design

and implement an API for extensible, policy-based network

service management that is (i) transparent, i.e. able to hide

1 We extend the definition of a management application given as “the logic

needed to control management features, e.g. routing or access control” [20]

by including also the set of processes that share states to perform such

features.



the implementation complexity of mechanisms, (ii) minimal

but complete, (iii) dynamic, i.e. supports policy adaptation

as network state changes, and (iv) general, i.e. usable by a

large set of management applications at different time scale

and across different scopes. The API is provided within the

framework of our Recursive InterNetworking Architecture

(RINA), whose design and implementation did not arise de

novo, but instead derives from first principles [4, 5].

RINA is based on the fundamental principle that network-

ing is inter-process communication (IPC.) It recurses the IPC

service over different scopes. IPC processes are merely ap-

plication processes that are members of a Distributed IPC

Facility (DIF.) Specifically, a scope defines a DIF comprised

of the set of IPC processes, possibly running on different

machines, that collaboratively provide a set of well-defined

flow services to upper application processes. Application

processes can themselves be IPC processes of an upper DIF

that is providing services over a wider scope.

A DIF is an organizing structure — what we generally

refer to as a “layer.” A DIF is a collection of IPC pro-

cesses (nodes.) Each IPC process executes routing, transport

and management functions. IPC processes communicate and

share state information. How a DIF is managed, including

addressing, is hidden from the applications. We extend the

notion of a DIF to a Distributed Application Facility (DAF).

A DAF does not support IPC but includes management func-

tionalities. 2

We introduce the management architecture of a DAF,

identifying four forms of management within the RINA

design principles: layer, network, naming and application

(Section 2.) We then present our Resource Information

Base (RIB)-based policy specification language (Section 3.)

Based on a pub/sub model, the RIB-based management

mechanisms and interfaces include a distributed set of RIBs

and RIB daemons (processes) that together with a common

application protocol (CDAP), update and maintain the state

of management objects shared among the processes com-

posing the DIF or DAF.

We evaluate with our prototype few representative exam-

ples of how our platform enables each of the four manage-

ment functionalities across different styles of management

ranging from totally decentralized, i.e. autonomic, to cen-

tralized, i.e. manager-agents style, to hybrid approaches, e.g.

hierarchical (Sections 4 and 5.)

Before concluding our work (Section 7), we also show

how our contributions differ from related service-based and

network management architectures, as well as from other ex-

tensible control platforms and recent declarative-based solu-

tions (Section 6.)

2 A DAF is logically built on a DIF that supports its inter-process communi-

cation. A DIF is a particular case of DAF that only provides communication.

2. Recursive InterNetwork Architecture

The basic premise of this architecture, yet fresh perspective,

is that networking is not a layered set of different functions

but rather a single layer of distributed Inter-Process Com-

munication (IPC) that repeats over different scopes. Each in-

stance of this repeating IPC layer implements the same func-

tions (mechanisms) but policies are tuned to operate over

different ranges of the performance space (e.g., capacity, de-

lay, loss.) In this model, application processes communicate

via an IPC facility and they can themselves be IPC processes

for higher level IPC facility (hence the recursion.) Since the

facility is distributed, we call it a Distributed Inter-process

communication Facility (DIF).

DIFs are different from the traditional definition of layer

in the Transmission Control Protocol/Internet Protocol (TCP/IP)

architecture. First, they perform a coordinated set of pol-

icy managed mechanisms to achieve the desired (IPC) ser-

vice rather than a single mechanism or small subset of pre-

determined mechanisms. Second, a DIF naturally separates

various concerns, including operation over different time

scales (e.g. short-term data transfer and multiplexing vs.

long-term connection management and access control is-

sues.)

More generally, we call a set of application processes co-

operating to perform a certain function a Distributed Appli-

cation Facility (DAF.) We focus on particular DAFs that are

used for network service management. Each member within

the DAF is called Distributed Application Process (DAP.)

A DIF is a specific DAF whose mechanisms are limited to

communication (Figure 1a.)

We elaborate on these concepts in the next subsections,

where we provide a more detailed overview of the RINA

design principles and components (Section 2.2) within the

management architecture framework of a distributed appli-

cation facility (Section 2.1.)

2.1 Management Architecture and Design Principles

The Distributed Application Facility (DAF) management

architecture consists of four forms of management: (i)
layer/DIF management for the purpose of managing the DIF

itself so as it provides IPC (e.g., assigning addresses to IPC

processes and routing among them); (ii) network manage-

ment for the purpose of managing the various DIFs that

make up the whole network (e.g., the dynamic creation of

new, wider-scope, DIFs to enable communication between

remote application processes); (iii) naming management for

the purpose of maintaining service/application names and

resolving them to addresses of IPC processes through which

services can be reached, and (iv) application management

for the purpose of supporting specific applications, e.g. file

sharing or content distribution.

In the rest of this section we describe the RINA design

principles, and how they relate to each management archi-

tecture domain. First, we introduce the three independent
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Figure 1. (a) Example of a RINA network: RINA has one building block (the DIF layer) that can be composed to form a

higher-level DIF from the services provided by lower-level DIFs. This figure illustrates composition by recursion of the DIF

layer. (b) Architecture of an IPC: each IPC process consists of three distinct sets of mechanisms dealing with IPC aspects at

different time scales: IPC data transfer, IPC data control and IPC management.

principles — the first two relate to layer/DIF management

and the third to network management, and later we move our

attention to the two dependent principles, the first relates to

naming and the second to application management.

Networking is inter-process communication. The first and

foremost design principle of the architecture is based on the

redefinition of a layer. Following R. Metcalfe’s quotation

(1970) “networking is Inter-Process Communication”, we

define a layer as a distributed IPC facility, that recursively re-

peats over different scopes. This means that a RINA network

is not a layered set of different mechanisms, but all layers

have the same building block, an IPC process. A distributed

set of application processes, e.g., a network management ap-

plication, use the IPC facilities to share and modify network

states (Figure 1a.)

All layers have only three sets of mechanisms, repeated

over different scopes. Each IPC process consists of three

sets of mechanisms dealing with communication aspects

at different time-scales: (i) a set of fast (frequently called)

mechanisms for IPC data transfer, e.g. Service Data Unit

(SDU) fragmentation, (ii) a set of slower mechanisms for

IPC data control, e.g. flow control, and (iii) the set of IPC

management mechanisms, e.g. routing, that operate at an

even slower rate, i.e. infrequently called (Figure 1b.) The

mechanisms also operate over different granularities and

time scales: data transfer (error and flow) control mecha-

nisms for example are flow-specific and they operate at a

round trip time scale, while the IPC management deals with

wide-area shared states (e.g. routing table updates) and op-

erate over longer time scales.

DIFs can be dynamically instantiated. Management ap-

plications adapt (network) configurations by modifying or

instantiating policies. Policies are tuned transparently, i.e.

hiding the implementation complexity of mechanisms, and

dynamically, i.e. without configuration transit anomalies or

service interruptions. The conditions of a managed network

may in fact change over time: the level of congestion may

increase, a denial-of-service attack may occur, or an appli-

cation instance may migrate for maintenance or change its

point of attachment while moving. RINA provides an ab-

stract interface to programmers of any management applica-

tion to support such configuration changes.

The above three independent design principles lead to

more specific dependent principles. We describe them, start-

ing from one, direct consequence of the dynamic DIF in-

stantiation that solves the mobility and multihoming prob-

lem (i.e., having more than one connection to the network).

Dynamic late binding. As virtual memory hides the alloca-

tion of physical memory – thus alleviating applications from

the burden and overhead of memory management – RINA

makes management application programming (e.g. routing)

easier by dynamically binding service (application) names

to addresses. An application process in RINA requests com-

munication with another application process from its under-

lying DIF using the name of the destination application. The

name is resolved by the DIF to the address of the IPC process

through which the destination application can be reached. If

the request is accepted, a flow instance is allocated and dy-

namically assigned a connection end-point identifier (CEP-

id). The application process is also dynamically allocated a

flow handle (port number) that is mapped to the CEP-id. Un-

like TCP/IP, where applications are privy to addresses and

well-known ports, RINA addresses inside a DIF are invisible

to the application processes — they are privately assigned

to IPC processes when they join the DIF (and are authenti-

cated). RINA addresses also specify processes in the same

DIF level, unlike TCP/IP where IP addresses are bound to

(lower-level) interface addresses. Addresses in RINA are rel-

ative, i.e. the address of a process at one DIF level is viewed

as a name by a lower level DIF.



Separation of mechanisms from policies. A policy is a

variant aspect of a mechanism. For example, acknowledg-

ment is a mechanism; when to acknowledge is a policy. By

only instantiating policies through the given interfaces (Sec-

tion 3.4), the complexity of management applications is re-

duced. One important implication of this principle is that

each DIF or DAF can have its own policies. This princi-

ple has several merits; we only discuss one for its historic

importance. It is known that, when managing a large scale

network, a connectionless approach is preferable at the edge

(where frequent loss or corruption occurs) for its resilience,

but it is prone to congestion, while connection-oriented net-

works are preferable in the core as they avoid congestion

even though they require connections to be re-established

or supported by redundancy as they are fragile to failure.

By instantiating the appropriate policies, the advantages of

connectionless and connection-oriented networking can co-

exist without their shortcomings. More generally any man-

agement policy can be instantiated in combinations with dif-

ferent scopes.

2.2 IPC Mechanisms

In this section we describe the architectural elements of an

IPC process and the mechanisms required for communica-

tion between any (management) application processes using

an underlying IPC facility.

Application processes establish communication using

their underlying IPC facilities. To provide such communi-

cation service, IPC processes employ three types of mecha-

nisms (Figure 1b): (i) IPC data transfer, that includes data

unit protection and delimiting mechanisms, a Data Transfer

Protocol (DTP), and a Relay and Multiplexing Task (RMT)

to efficiently share the IPC facility among several flows. (ii)
IPC transfer control, that supports requested channel prop-

erties during data transfer via a Data Transfer Control Pro-

tocol (DTCP); we name the combination of DTP and DTCP

as Error and Flow Control Protocol (EFCP.) (iii) IPC man-

agement, that handles the functionalities needed to establish

and maintain states, and includes a Common Distributed

Application Protocol (CDAP) to operate on, or populate a

Resource Information Base (RIB) with states, e.g. applica-

tion names, addresses, and performance capabilities used by

various DIF management tasks, such as routing and flow

management.

Although we implemented the relay and multiplexing

mechanism, as well as the basic functionality of the Data

Transfer Protocol for flow management, the focus of this pa-

per is on the design and implementation of the IPC manage-

ment mechanisms. 3

3 The implementation of a fully-fledged efficient Error and Flow Control

Protocol is part of our ongoing and future work.
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Figure 2. Using our policy specification language, Dis-

tributed Application Process (DAP) programmers can spec-

ify the logic for managing a layer, the network, the naming

of services, or an application.

3. RIB-Based Management

Transparency is the ability of hiding the complexity of the

implementation of mechanisms of a (distributed) system

from both users (of a service or applications) and appli-

cation programmers. To provide transparency, a distributed

system architecture should offer interfaces to the (physical,

virtual or logical) resources, so that such resources appear to

be locally available. An object model is the means by which

such transparency is provided, and consists of a set of inter-

faces to the objects (resources), a set of (CDAP) operations

on the objects, and a broker or RIB daemon to handle such

operations.

As the Management Information Base (MIB) defined

in [18] or the Network Information Base (NIB) defined

in Onix [20], our Resource Information Base (RIB) is a

partially replicated distributed object-oriented database that

contains the union of all managed objects within a DAF, to-

gether with their attributes. The role and responsibilities of

the RIB daemon are similar to those of memory management

in an operating system: to manage the information stored in

the RIB and its veracity, updating and making states avail-

able to (IPC and application) processes.

Each form of management — layer, network, naming and

application (Section 2.1) — is performed by a Distributed

Application Facility (DAF). Based on a pub/sub model, a

distributed set of RIBs and RIB daemons enable Distributed

Application Processes (DAPs) to specify different styles of

management within each form, ranging from fully decen-

tralized, i.e. autonomic, to centralized, i.e. manager-agents

style, to hybrid approaches, e.g. hierarchical. Each (man-

agement) DAP is composed of an IPC Resource Manager

(IRM), a RIB daemon, and a user-defined component that

implements the logic of the distributed management applica-

tion facility using our API as a policy specification language

(Figure 2.) The DAF responsible for layer management is

composed of the management part within each IPC process

(Figure 1b). The network management DAF is handled by

the Network Management System (NMS) of each DIF. The

Inter-DIF Directory (IDD) service is responsible for naming

management by answering queries via a set of local agents

responsible for intra-DIF name resolution.
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In this section we describe the broker architecture (Sec-

tion 3.1), the CDAP operations (Section 3.2), the IRM com-

ponent (Section 3.3), and the RINA API (Section 3.4.)

3.1 Broker (RIB Daemon)

Similarly to traditional existing object models [12, 28], our

architecture has a broker (part of the RIB management) re-

sponsible for allowing management processes to transpar-

ently make requests and receive responses. The broker han-

dles such communication with subscription events. A sub-

scription represents the quantity and type of information, to

propagate in predefined situations by a management appli-

cation on objects when specific situations occur.

Subscription events are mapped by the broker that rec-

ognizes the objects from their type, and acts upon differ-

ent requests with a set of operations on objects in a local

or remote RIB on behalf of the application process. Sub-

scriptions have equivalent design goals as the notification

events defined by the OSI model [15], or traps in the Sim-

ple Network Management Protocol (SNMP) [3], though they

support more advanced control operations. For example, as

in [11], they allow efficient control operations by supporting

the separation of local frequent management operations from

wide-area and infrequent operations. A local (read / write)

operation may consist of a direct access to attributes of ob-

jects in a local RIB, e.g. for link (or any resource) discovery,

while an infrequent and wide-area operation on remote ob-

jects may be routing updates, by generating a sequence of

CDAP messages on remote RIBs.

3.2 Operations on Objects: Common Distributed

Application Protocol (CDAP)

To share or modify states such as routing updates, and

to coordinate joint operations on communication instances

in a distributed management application, RINA defines a set

of operations executable on (remote) objects. Such opera-

tions are supported by a Common Distributed Application

Protocol (CDAP) whose design is based on modular, object-

oriented principles [15] [13]. CDAP is based on three logi-

cal modules: a Common Application Connection Establish-

ment (CACE) module, required for application protocol and

syntax agreement within the application connection, an (op-

tional) authentication module, and a set of CDAP messages

for operating on objects.

With the goal of designing a general management (ap-

plication) protocol, CDAP is responsible for disseminating

the information necessary for the coordination of any DIF

or DAF. To this end, we observe that only six operations

can be performed on objects — create/delete, read/write, and

start/stop — and that only two operations — connect and re-

lease — are sufficient to enable authentication and coordina-

tion among instances (entities) of a management application.

While application processes are free to define new types

of objects to serve any (management) purpose, as long as

all the application instances agree on the same object data

representation, we define the DAF management mechanisms

such that they impose restrictions on specific RINA uses

of CDAP, i.e. on how to form and manage a distributed

IPC facility with the enrollment procedure (Section 5.1) and

other management operations, e.g. neighbor discovery.

3.3 IPC Resource Manager (IRM)

The IPC Resource Manager (IRM) is an important compo-

nent of the architecture, present in all application processes.

It is responsible for managing the use of underlying DIFs

and their IPC processes, including the allocation and deallo-

cation of flows among such processes.

To establish a communication, application instances need

to allocate a flow. Such flow requests, initiated by the appli-

cation using its IRM API (Table 1), are handled by the IRM

and forwarded to one of its underlying IPC processes that

can provide transportation service to the desired destination

by using its IPC Flow interface.

The flow allocator of the underlying IPC process for-

wards the allocation request to the remote application pro-

cess. If the request is accepted, a flow identifier is generated

and returned to the requesting application process (Figure 4)

to use for sending/receiving data.

3.4 RINA API

We design and provide a general API that simplifies the de-

sign and development of sophisticated and scalable manage-

ment applications, leveraging the separation between mech-

anisms and policies, thus allowing (management) applica-

tion processes to read and write any state — set of object at-

tributes — of any manageable element of the network (e.g.

a router.)

Object attributes can be read or written through a general

subscription mechanism that includes registration for pas-

sive (subscribe) or active (publish) notifications of local or

remote state changes. In support of subscription generation

events, we provide a set of flow management IPC Resource

Manager (IRM) API, i.e. for allocation, deallocation and us-

age of a flow (Table 1.)

Every application instance has a copy of its management

states stored in a distributed data structure that we call Re-

source Information Base (RIB). Every (IPC and application)
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−
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receive FlowID Message

Table 1. RINA API: The RIB Daemon API is used for read

or write operations on members and attributes of the RIB via

publish or subscribe events. The IPC Resource Manager API

is used to manage flows between application processes.

process has a Broker (or RIB daemon), responsible for man-

aging the subscriptions and updating the RIB distributed ob-

ject database. The RIB is the core of our service management

architecture and represents a generalized case of the Routing

Information Base stored in IP routers. Rather than only stor-

ing prefixes to destinations, our RIB stores all the resources

accessible by the management application instance.

When a management process (for example a routing ap-

plication process) subscribes to a service, a subscription

event is created. A subscription requires a set of parameters:

(i) a mandatory unique subscription ID, limited to the scope

of the service; (ii) a list of attributes to be exchanged, (iii) a

list of members among which the attributes are exchanged,

(iv) a logical expression that defines the time scale at which

those information shall be exchanged with some (v) variance

or tolerance, and (vi) a flag on whether the process needs to

read or write (i.e. subscribe or publish) the attributes.

The RIB subscription mechanism is a generalized case

of every publish-subscribe paradigm. Standard publish-

subscribe systems are usually asymmetric. The RIB sub-

scription mechanism not only supports both the symmetric

and asymmetric paradigms, that is, the publisher process is

capable of selecting the subscribers, 4 but also the traditional

query-based paradigm is supported, where a process sends a

request to a server and waits for its response.

Note also while the RIB is the means by which manage-

ment applications are scalable and resilient to failure, RINA

relies on the logic of the management application to achieve

such desirable properties; (partial) copies of a RIB may be

in fact replicated and distributed among multiple application

instances if configured by the management application.

Example (subscription and API usage). As an example

of our policy language specification within our RIB-based

management framework, we walk through the sequence of

steps behind a simple subscription. We show how an appli-

cation process AP1 obtains a link state information from its

direct neighbors N1 every 10 seconds for routing purposes.

AP1 uses its RIB daemon API to subscribe to N1 link state:

createSub("linkState", N1, 10).

The subscription is handled by the RIB daemon and con-

verted into a CDAP message requesting the link state over a

flow, previously allocated by using its IRM API:

flowID = allocateFlow(AP1, N1)

send(flowID, CDAPMsg).

4. Prototype Implementation

This paper uses initial version of our RINA prototype, which

consists of 28,000 lines of Java code, excluding support

libraries, test applications, and configuration files, and it

was tested with application and IPC processes running on

the local campus network, both on Linux machines and on

Android phones. Also we have demonstrated our prototype

on the GENI testbed [35]. The latest version of our RINA

prototype can be found at [29].

In all our experimental settings, we use machines with

an Intel Core 2 Quad CPU at 2.66 GHz and 4 GB of mem-

ory, running Scientific Linux 6.2 (Carbon). The implemen-

tation of the data transfer mechanisms is limited to the relay,

multiplexing and flow management within the Data Transfer

4 For example a management application sending routing updates may pre-

fer to be (temporarily) silent with subscribers along a given path, because

of congestion, or because it has detected a misconfiguration or a suspicious

behavior.
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the routing management application, built to show how in RINA different routing policies can be easily instantiated to improve

performance.

Protocol (DTP). An efficient kernel implementation of such

and other shorter time-scale data transfer mechanisms is de-

ferred to another paper as we focus here on longer timescale

management issues.

All management (CDAP) and transfer (DTP) messages

are serialized and deserialized using the Google Protocol

Buffers [9]. The prototype is built as an overlay over the Java

TCP library, where TCP connections are used to emulate

physical connectivity.

To demonstrate how RINA enables policy-based dynamic

service composition, we built few example applications that

illustrate its use in managing a distributed facility (Sec-

tion 5.)

5. Service Management Case Studies

In this section we show how the RINA API is used as a

policy specification language to build a set of management

applications. We present various case studies to demonstrate

the different forms of management:

(1) Layer/DIF management — we use the proposed API to

trigger an enrollment procedure (Section 5.1), and to specify

a link-state routing policy in which each IPC process of

a DIF publishes its link state, at a certain frequency, and

subscribes to the link state of every other IPC process. The

latter is an “autonomic” style of management within the

DIF where each IPC process is configured to independently

respond to changes in the network state (Section 5.3.)

(2) Network management — for application processes to

communicate, we show a case where they lack an underlying

DIF that can support their IPC communication. Thus they

need to join a new wider-scope (higher-level) DIF initiated

by a relay application process. The source and destination

application processes enroll into the new DIF subject to the

management policies of the new layer/DIF (Section 5.2.)

This is a centralized style of management where the relay

application acts as the entity controlling the enrollment into

the new DIF.

(3) Naming management — we present the case of an ap-

plication process requesting the allocation of a commu-

nication flow through its underlying DIF using the ser-

vice/application name (Section 5.2.) If the service is reach-

able through an underlying DIF, then a flow handle asso-

ciated with the destination IPC process hosting the service

is returned. Otherwise, if the service is unreachable, then a

wider-scope (higher-level) DIF needs to be created. In this

latter case, the service name is resolved to an application

(relay service) that initiates the creation of a new DIF (see

(2)) through which the service can be reached. This is a hi-

erarchical style of management where underlying DIFs first

try to locally resolve the service name, before a global name

resolution takes place.

(4) Application management — we used the proposed API

to specify a load balancing policy where load balancing

is done hierarchically by distributing requests across two

DIFs, both hosting the service, then over the chosen DIF,

the service name is registered to the application process that

is least loaded and that mapping is published to the directory

service (Section 5.4.)

The above common management applications were cho-

sen as they are usually statically or manually configured, i.e.

unable to adapt to external state changes, but they potentially

impact system performance, such as decreasing throughput

and increasing delay. In our description, we point out the

mechanisms and the policies being used, and we show few

experimental results.

5.1 Layer Management Case Study: Enrollment

Procedure

As an example of a Distributed Application Facility (DAF)

with layer (DIF) management functionality, we describe the

enrollment procedure. The enrollment, the allocation (i.e.,

establishment of a flow) and the data transfer phases are

the three phases of operation that need to be performed

for a sender-receiver communication to occur. An enroll-

ment creates, maintains, distributes (and eventually deletes



upon withdrawal) information within a DIF. Such informa-

tion may include addressing, access-control rules or other

management policies necessary to create instances and char-

acterize a communication. 5

In RINA, IPC processes need to be enrolled into the same

DIF to communicate. The procedure starts with a subscrip-

tion call by the enrollment DAP, using the RIB daemon in-

terface (Section 3.4):

DIFSubID = createSub(DIFName, IDD, - )

The subscription has a single object attribute named

DIFName, and triggers a query to an Inter-DIF Directory

(IDD). The query contains such DIF name attribute in which

the DAP needs to enroll. The directory service mechanism

dictates that the query reply must contain at least the ad-

dress of an IPC process within the requested DIF (if any),

and other optional information such as a list of supporting

DIFs that can be used to reach the IPC process, or any DIF

policy (for example their authentication.) Once the DAP has

obtained the address of such IPC process, it requests au-

thentication (e.g. with user and password or SSH keys.) If

successfully authenticated, the IPC process assigns the new

member a name — an address within the DIF, and other

DIF configuration states, such as routing policy, the current

members of the DIF, and the list of application processes

directly reachable by them. Lastly, the IPC process that en-

rolled the new DIF member updates all the other existing

IPC processes with the new member information, such as

new application processes reachable from it.

5.2 Network Management Case Study: Dynamic DIF

Formation

As an example of DAF with network management func-

tionality, we walk through the steps necessary to dynami-

cally form a DIF. In this case study, the DAF is simply the

Network Management System (NMS) process managing the

new DIF. The enrollment procedure allows IPC communi-

cation and the formation of a distributed IPC facility (DIF.)

Management application processes can then share and mod-

ify their states within that facility to manage the DIF so as

to provide communication for application processes. In this

subsection we consider two application instances trying to

establish a communication flow even though they cannot find

a common existing DIF to communicate over: a new (higher

level) DIF needs to be dynamically created.

We consider three application processes that use two 0-

level DIFs, DIF1 and DIF2 to communicate (Figure 5a.)

Each underlying facility has two IPC processes. In partic-

ular, App1 and App3 use IPC1 and IPC4 as underlying IPCs

for their communication in DIF1 and DIF2, respectively,

while App2 uses IPC2 and IPC3 for its communications in

DIF1 and DIF2, respectively.

5 Examples of enrollment procedures in today’s Internet are found in the

IEEE 802.11 and IEEE 802.1Q. Other examples are the assignment of MAC

addresses, or the creation of a listening well-known socket (see [4], Ch. 2.)

App1 creates the subscription whose object contains a

single attribute, the remote application instance name App3:

DIFSubID = createSub(applicationName, IDD, - )

to trigger the Inter-DIF Directory service mechanism and

discover which DIF it needs to join to establish a flow with

App3. If previously registered as relay service for App3, the

address of App2 is returned to App1. DIF3, is the new 1-level

facility dynamically created by App2. The first member of

DIF3 is IPC7, forked by App2, manager of the new DIF3.

App2 then invites both App1 and App3 to join and to enroll

into the 1-level DIF3. Each application process forks a new

IPC process (IPC5 and IPC6.) Now that DIF3 is dynamically

formed, App1 can establish a connection with App3 through

DIF3.

5.3 Layer/DIF Management Case Study: Policy-Based

Routing

Due to a wide range of variability in network connectiv-

ity and also a wide range of data traffic patterns, a one-

size fits-all routing protocol does not exist. As previously

studied [21], even hybrid routing protocols (e.g. [30]) per-

form well only under certain conditions and require addi-

tional heuristics to achieve good performance in scenarios

for which they were not designed. Policy-based manage-

ment protocols instead, such as routing, enable systems to

promptly adapt their behavior to different (management) ap-

plications as well as to external conditions, e.g. to virtual

server migrations or failure. In this section we show how

in RINA, a routing DAF enables better data delivery per-

formance with respect to its alternative statically configured

solution by allowing flexible policy specification.

Procedure 1 : Link State Routing

1: NbrSubID = createSub(‘neighbour’, myself, f1)

2: SelfLSSubID=createSub(‘linkState’, myself, f2)

3: LSPubID=createPub(‘linkState’, f3)

4: NbrList = readSub(NbrSubID)

5: LSSubID=createSub(‘linkState’, NbrList, f4)

6: repeat every T seconds

7: SelfLinkState = readSub(SelfLSSubID)

8: writePub(LSPubID, SelfLinkState)

9: GlobaLinkState = SelfLinkState

10: NbrLinkState = readSub(LSSubID)

11: GlobaLinkState=GlobaLinkState ∪ NbrLinkState

12: FWTable = buildFWTable(GlobaLinkState)

13: end repeat

Using Dijkstra’s algorithm, we implemented a link state

routing as a DIF management application. Consider Proce-

dure 1. To compute a routing table, a map of the network

connectivity needs to be determined by distributing the cost

to reach each neighbor. 6 To this end, each (routing) appli-

cation process initiates a discovery mechanism to broadcast

6 We used the end-to-end delay as a cost metric policy.
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Figure 6. (a) Throughput improves due to a faster path adaptation after a main path failure under more frequent link state

updates. (b) Intra-DIF load balancing: Lower CPU usage is measured on each server when the intra-DIF load balancing policy

is applied within the same facility. (c) Inter-DIF load balancing: lower CPU usage is measured on each server when the IDD

load balancing policy is applied across facilities.

its link state, and obtain the link states of its neighbors (Pro-

cedure 1, lines 1− 5.) In particular, each routing application

process subscribes to its own RIB Daemon to learn of its

available neighbors (line 1) and cost to reach them (line 2),

and then publishes its own link state (line 3 and lines 7−9.)

It also creates subscriptions to all its neighbors to get their

link states (lines 4 and 5.)

Such link state information obtained from its neighbors

(line 10) together with its own link state information (line

9) is later (recursively) aggregated (line 11) to compute the

network connectivity map (denoted as GlobaLinkState) and

to build the forwarding table (line 12.) Lastly, lines 7− 12

are repeated for the routing application to adapt to possible

changes of the network.

Routing experiment. To demonstrate the flexibility of our

policy based approach, we set up a 1-level DIF on top of

two 0-level DIFs (Figure 5c), and we run a routing applica-

tion (Procedure 1) with different link state update frequency

(f4.) Procedure 1 shows how four frequencies can be set as

a policy: f1 and f2 specify how often the neighbor identity

and link state information are updated; f3 specifies how fre-

quently the link state information is published, and f4 spec-

ifies the frequency at which the neighbors’ link states are

retrieved. We used two periods of 5 and 10 seconds for f4−1

while we keep constant values for f1−1, f2−1, and f3−1 to 2

seconds. The forwarding table is computed every T= f4−1

seconds. After all the DIFs are formed and the routing ta-

bles have converged, we start a file transfer application from

IPC-A to IPC-D. The file transfer starts on the flow IPC-A,

IPC-B, IPC-D. After approximately 60 seconds, we let the

intermediate process IPC-B be unavailable, and we observe

how different routing policies update the routing tables at

different speed. Not surprisingly, lower update frequency

yields slower path recovery and hence lower throughput.

5.4 Application Management Case Study: Load

Balancing

High performance application or content delivery networks

such as the Akamai network [27] store customer states in

(hierarchically) partitioned distributed storage systems. Ev-

ery partition scope is limited to a subset of the private net-

work, and appropriate storage servers are resolved using

static and manually configured mapping rules. 7 Using the

RINA mechanisms, this mapping can be made dynamic, and

the load on such partitions can be redistributed as the utiliza-

tion of storage servers change.

In the next two subsections we explain how a network

monitoring application can be implemented using the RINA

mechanisms for balancing both the inter and intra DIF load.

We assume that a service is provided by different servers,

and that each server application process registers (using its

underlying IPC process) to its local IDD agent and such

agent registers to the Inter-DIF Directory service.

5.4.1 Intra-DIF Load Balancing

Procedure 2 : Intra-DIF Load Balancing

1: LoadSubID = createSub(‘load’, MemberList,freq)

2: for all Query do // to local IDD agent

3: Load = readSub(LoadSubID)

4: IPCName = Resolve(Query, Load, Policies)

5: Reply(IPCName)

6: end for

If a client application process wants to access a service

available on multiple servers within the same DIF, we let a

monitoring DAF be responsible for monitoring and balanc-

ing the Intra-DIF load on the servers of the DIF. In particular,

a management application can be set up as in Procedure 2.

7 See e.g. the Memcached system [25].



First, the monitoring application needs to subscribe to all

the members of the DIF to get updates on the load of all

servers (that use communication service provided by IPC

processes of this DIF) at a given frequency (Procedure 2,

line 1). Such subscription is handled by the RIB daemon of

each DIF member, and is added to the subscription list of

processes to be updated with load information. When the

IDD local agent receives a query in an attempt to resolve a

given service name (line 2), the load of each server hosting

the queried service is read (line 3) and compared, and the

currently best IPC process name (address of an underlying

IPC of the server hosing the service) is returned (line 5)

based on the IDD policy such as least CPU usage (line 4.)

Intra-DIF load balancing experiment. We tested the intra-

DIF load balancing by letting two IPC processes offer the

same service, and enroll in the same DIF. The toy service

consumes a fixed percentage of the CPU capacity for the en-

tire duration of the experiment and we let several client ap-

plication processes request the hosted service. We measure

the CPU utilization of the two servers, with and without the

load balancing, observing full CPU utilization on the single

server when the local IDD policy redirects all requests to it,

versus halved load utilization on each server when load is

distributed equally across both servers (Figure 6b.)

5.4.2 Inter-DIF Load Balancing

To demonstrate the flexibility of RINA, we show how the

same load balancing functionality can be performed using

a different set of mechanisms. In particular, we assign to

the Inter-DIF Directory (IDD) service the responsibility of

balancing the load across requests for a service hosted on

different DIFs.

Via their local IDD agents, services register to IDD. IDD

interacts with the local agent of each DIF by subscribing to

the load information of services hosted in each DIF (Pro-

cedure 3, line 1.) When an agent receives such subscrip-

tion request, its RIB daemon adds the IDD to its subscribers

list, and periodically publishes the load information of the

requested services. In this example load balancing applica-

tion, the load information is the sum of the CPU usage of all

servers hosting the queried service within the DIF. Similarly

to the intra-DIF load balancing application, when the IDD

receives a query to resolve a certain service name (line 2),

it reads such aggregate load information from its own RIB

(line 3) and resolves the service name to a DIF name ac-

cording to its policies (line 4.) The client IPC process can

hence join the least loaded DIF to access the requested ser-

vice (line 5.)

Inter-DIF load balancing experiment. We also tested the

inter-DIF load balancing by letting two IPC processes host-

ing the same service enroll in two different DIFs. Again in

this case, the same toy service consumes a fixed amount of

CPU for the entire duration of the experiment and the CPU

Procedure 3 : Inter-DIF Load Balancing

1: LoadSubID = createSub(‘load’, agentList, freq)

2: for all Query do // to IDD

3: Load = readSub(LoadSubID)

4: DIFName = Resolve(Query, Load, Policies)

5: Reply(DIFName)

6: end for

utilization of each server is compared to the CPU utiliza-

tion of a single DIF / server resolution policy where the IDD

redirects all the requests to a single DIF / server. This ex-

periment demonstrates that the same result can be obtained

using a different set of RINA mechanisms (Figure 6c.)

6. Related Work

A complete taxonomy of all the relevant architectural solu-

tions is too large to cite fully and would require a survey;

we focus on recent representative solutions along the dimen-

sions that best clarify our contributions.

Service-Based Architectures. Online services and their

ability to generate new revenue models for (service and

infrastructure) providers and enterprises, together with the

inability of the current Internet to cope with new require-

ments have recently spurred research in service-based ar-

chitectures and their management. Some solutions do not

rely on the current Internet architecture, e.g. [10, 16, 19],

while others augment the TCP-IP layers, e.g. [26, 33]. The

Serval architecture [26] for example, inserts a level of in-

direction (service layer between TCP and IP) to support

a flow-based 8 anycast paradigm (the Internet today only

supports host-based unicast), with dynamically-changing

service instances: network addresses are associated with a

service and are able to change over time (while Internet ad-

dresses are exposed to and cached by applications.) RINA

also dynamically (re)assigns names to processes support-

ing the service-based anycast abstraction as in [19, 26], but

(application) process names are dynamically bound to (not

necessarily IP) addresses, unique within a DIF, and our RIB

subscriptions naturally support anycast and multicast. We

call this general form a whatevercast name. 9

Extensible Control Platforms. The design and implemen-

tation of distributed systems for network control has also

been an active area of research [2, 6, 11, 17, 20, 31, 34]. One

example of such systems is Onix [20], a platform that pro-

8 Flow-based means that packets of the same flow reach the same (possibly

moving) service instance — set of processes — through late binding of

names to addresses [36].
9 We observe that anycast and multicast are two forms of the same construct:

an anycast address is the name of a set of addresses with a rule, such that

when the name is referenced, the rule is evaluated and returns one member

of the set that satisfies the rule; a multicast address is a set where the rule

returns all members of a group.



vides API in support of control policy implementations. As

the Resource Information Base (RIB) in RINA, the Network

Information Base (NIB) of Onix decouples the forwarding

from the control mechanisms (avoiding their direct interac-

tion.) RINA extends this contribution by extracting only the

subset of essential interface on objects needed to perform

any management operations. Moreover, unlike RINA (that

provides the CDAP protocol for operations on objects), Onix

does not dictate a protocol to manage network element (for-

warding) states.

Another more recent solution that focuses on scalability

of control applications is Kandoo [11]. By separating in-

frequent control operations that require network-wide state

(e.g. routing) from frequent local control operations (e.g.

link layer discovery), the Kandoo controller architecture

splits the functionalities into a two-level design with multi-

ple (lower-level) local controllers and a single (higher-level)

centralized controller. While our RIB-API allows control of

both network-wide states (with RIB subscriptions) and di-

rect read/write operations for high frequency local control

operations, the recursive nature of RINA extends the two-

level controller architecture of Kandoo into a hierarchy of

controllers in support of management applications that are

not necessarily local, but have limited scope (e.g. within a

single DIF.)

Network Management Protocols and Architectures. Net-

work management has been historically split into the Open

System Interconnection (OSI) paradigm, i.e. Common Man-

agement Information Protocol (CMIP) [15], whose goal has

been to deal with distributed network management of large

public telecommunication networks, and the Internet man-

agement, i.e. the Simple Network Management Protocol

(SNMP) [3], whose management target has been limited

to Internet devices. Object-based management architectures

have also been proposed [23, 28], the most popular being

CORBA defined by OMG [28], an attempt to unify exist-

ing paradigms supporting various management systems (e.g.

CMIP and SNMP.)

Leveraging previous service management architecture ef-

forts, our contribution lies in extracting their commonalities,

reducing their complexity, and augmenting their architecture

with support for management of more advanced services. In

particular, RINA uses an object-oriented paradigm similar to

the CORBA and OSI models, as opposed to SNMP that rep-

resents information only with variables, too simple to handle

sophisticated management operations. The object model is

however different, in the way operations on objects (CDAP

as opposed to CMIP) and notifications are defined (RINA

uses subscriptions).

RINA is also different in its resource specification lan-

guage. Although RINA supports any type of abstract syntax,

we use the Google Protocol Buffers [9] to specify data types

and the managed objects, while to define data types, the OSI

and SNMP models use the ASN.1 [14]. CORBA instead uses

a less expressive Interface Description Language (IDL) [28].

Finally, RINA allows management processes to directly

access management objects through the RIB-API as in

CORBA. Through a distributed NMS implementation, RINA

also supports the manager-agents paradigm, as in both the

OSI and Internet models.

Declarative-Based Solutions. Relevant to our work are also

solutions discussing declarative protocols [21, 22], and ar-

chitectures [1, 7] for both control [8, 20] and resource man-

agement applications [7, 21, 22]. 10 In particular, the ex-

pressiveness of both wired [22] and wireless [21] policy-

based protocols enables systems to adapt protocol behav-

iors in support of (management) applications. Most of these

existing solutions tackle a specific management application,

e.g. routing in MANET [21], or control for large scale wired

networks [20]. By decoupling policies from mechanisms

through the RIB, its interfaces (RIB-API) and its (CDAP)

operations, RINA provides flexibility and supports policy-

based dynamic service composition for a wide range of

wired and wireless management applications.

7. Conclusions

The challenge of providing a simpler and more flexible

network management abstraction, capable of accommodat-

ing modern service requirements and lowering the cost of

network management, has fostered extensive research in

service-based, network management architectures. We pro-

posed a policy specification language within our Recursive

InterNetwork Architecture (RINA), that allows dynamic net-

work service composition, and facilitates the design and the

implementation of general management applications.

We presented the design and implementation of the man-

agement mechanisms of RINA, providing a general API

for network management policy programmability. We have

demonstrated, through the implementation of few key com-

mon network management applications, how different poli-

cies for routing and load balancing can be specified and in-

stantiated using different mechanisms of the architecture.
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