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Abstract—Traditional network management is tied to the
TCP/IP architecture, thus it inherits its many limitations, e.g.,
static management and one-size-fits-all structure. Additionally
there is no unified framework for application management, and
service (application) providers have to rely on their own ad-hoc
mechanisms to manage their application services. The Recursive
InterNetwork Architecture (RINA) is our solution to achieve
better network management. RINA provides a unified framework
for application-driven network management along with built-in
mechanisms (including registration, authentication, enrollment,
addressing, etc.), and it allows the dynamic formation of secure
communication containers for service providers in support of
various requirements.

In this paper, we focus on how application-driven network
management can be achieved over the GENI testbed using
ProtoRINA, a user-space prototype of RINA. We demonstrate
how video can be efficiently multicast to many clients on demand
by dynamically creating a delivery tree. Under RINA, multicast
can be enabled through a secure communication container that
is dynamically formed to support video transport either through
application proxies or via relay IPC processes. Experimental
results over the GENI testbed show that application-driven
network management enabled by ProtoRINA can achieve better
network and application performance.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] and Network

Functions Virtualization (NFV) [2] have recently attracted

considerable attention in the networking area. They both aim

to provide better and more flexible network management. SDN

simplifies network management by enabling programmability

of the network through high-level network abstractions. NFV

implements network functions as software instead of dedicated

physical devices (middleboxes) to virtualize and consolidate

network functions onto industry standard servers. Both SDN

and NFV enable network innovations, allow new network

service models, and benefit both network managers and regular

users. However most work on SDN and NFV is tied to the

TCP/IP architecture, and inevitably it inherits many of its

limitations, such as static management and one-size-fits-all

structure.

The Recursive InterNetwork Architecture (RINA) [3], [4]

is a network architecture that inherently solves the problems

of the current Internet, such as lack of support for security

and qualify-of-servcie (QoS). RINA’s management archite-

cure [5] is our solution to achieve better network management,

and it inherently supports SDN and NFV concepts [6], [7].

Most importantly, RINA supports application-driven network

management, where a federated and secure communication

container can be dynamically formed in support of different

application requirements.

The contributions of this paper are as follows. We explain

how application-driven network management can be achieved

with ProtoRINA [8], [9], a user-space prototype of the RINA

architecture, and as an example we illustrate how video can

be efficiently multicast to many clients on demand.

The rest of the paper is organized as follows. The back-

ground is briefly described in Section II. RINA mechanisms

for application-driven network management are explained in

Section III. Experiments over the GENI testbed are presented

in Section V. In the end, Section VI concludes the paper with

future work.

II. BACKGROUND

A. RINA Architecture and ProtoRINA

The Recursive InterNetwork Architecture (RINA) [3], [4]

is a new network architecture which inherently solves the

communication problem in a fundamental and structured way.

RINA is based on the fundamental principle that networking is

Inter-Process Communication (IPC) and only IPC, and it has

two main design principles: (1) divide and conquer (recursion),

and (2) separation of mechanisms and policies.
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Fig. 1. RINA overview

1) Distributed Application Facility: As shown in Figure 1,

a Distributed Application Facility (DAF) is a collection of

distributed application processes with shared states. Each DAF

performs a certain function such as video streaming, weather

forecast or communication service. Particularly, a Distributed

IPC Facility (DIF), i.e., a collection of IPC processes, is a

special DAF whose job is to provide communication services

over a certain scope (i.e., range of operation) for application

processes. Recursively, a higher-level DIF providing larger



scope communication services is formed based on lower-

level DIFs that provide smaller scope communication services.

Different DAFs use the same mechanisms but they may use

different policies for different purposes and over different

scopes.

RINA simplifies the network protocol stack by only using

two protocols: the Error and Flow Control Protocol (EFCP)

and the Common Distributed Application Protocol (CDAP).

EFCP is used for data transfer, and CDAP is used by network

management or user-specific applications. Most importantly,

CDAP is the only application protocol needed in RINA to

support various applications.

2) ProtoRINA: ProtorRINA [8], [9] is a user-space pro-

totype of the RINA architecture. ProtoRINA provides a

framework with common mechanisms, and it enables the

programming of recursive-networking policies (supported by

user applications or network management applications). It can

be used by researchers as an experimental tool to develop

(non-IP) user and management applications, and can also

be used by educators as a teaching tool in networking and

distributed systems classes. In ProtoRINA, a RINA node is

a host (or machine) where application processes and IPC

processes reside. A DIF Allocator is a management DAF with

application processes running on RINA nodes to manage the

use of various existing DIFs and can create new DIFs on

demand to provide larger-scope communication services or

meet different application-specific requirements.

B. Application-Driven Network Management

By application-driven network management, we mean given

the physical topology of the network, virtual networks can be

built on the fly to satisfy application-specific demands and

achieve better network performance. In RINA, each virtual

network is actually a secure transport container providing

inter-process communication. Processes inside such transport

containers are authenticated and instantiated with policies that

meet the needs of applications running atop, and such policies

include private addressing, access control, routing, resource

allocation, error and flow control, etc. In RINA, a DIF is such

a secure transport container, which can be dynamically formed.

Each DIF has its own scope, and DIFs all use the same RINA

mechanisms but can have different policies.

Most recent work on network management, such as SDN

management platforms (such as NOX [10], Onix [11],

PANE [12]) or NFV management platforms (such as

ClickOS [13], OpenNF [14]), focuses on managing the net-

work in a flat way where there is only one scope with includes

all elements (physical components, i.e., devices, and logical

components, i.e., processes) of the network. And they do not

allow dynamic instantiation of such transport containers with

different subscopes (subset of network elements) based on

application requirements. Some work has been done to support

network virtualization based on application requirements, such

FlowVisor [15] and ADVisor [16], but their virtual network is

limited to routing and not for transport purpose, and they do

not support dynamic formation of virtual networks.

With the development of new networking service models

(such as Private Cloud as as Service or Software as a Service),

as well as the demand for different SLAs (Service-Level

Agreements), we believe application-driven network manage-

ment is necessary and will become the norm.

III. RINA MECHANISMS FOR APPLICATION-DRIVEN

NETWORK MANAGEMENT

A. DAF-Based Management Architecture

As mentioned in Section II-A1, a DAF is a collection

of distributed application processes cooperating to perform

a certain function. RINA’s management architecture is DAF-

based [5], i.e., application processes providing management

functionalities form different management DAFs, and the

same DAF-based management structure repeats over different

management scopes.

We would like to highlight two forms of management based

on scope. The first one is DIF management, i.e., managing the

DIF itself to provide communication service within a small

scope. Examples of such management include different poli-

cies for routing traffic or establishing transport flows among

IPC processes. The second one is network management, i.e.,

managing various DIFs that form the whole network. Ex-

amples of such management include dynamic formation of

new DIFs to provide communication services between remote

application processes.

In the former case, the Management Application Entity [9]

of each IPC process inside the DIF forms the management

DAF, and in the latter case, the DIF Allocator forms the

management DAF for the whole network (Section II-A2). Our

previous work [6] focused on the DIF management where

policies of a single DIF can be configured to satisfy different

application requirements, while in this paper we focus on

network management where new higher level DIFs can be

formed in support of application-specific demands.

B. Application Process Components and RINA APIs
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Fig. 2. Application Process Components and RINA APIs

Figure 2 shows the common components of an application

process in ProtoRINA. The Resource Information Base (RIB)

is the database that stores all information related to the opera-

tions of an application process. The RIB Daemon helps other

components of the application process access information



stored in the local RIB or in a remote application’s RIB.

Each application process also has an IPC Resource Manager

(IRM), which manages the use of underlying IPC processes

belonging to low-level DIFs that provide communication ser-

vices for this application process. The Application Entity is the

container in which users can implement different management

(or application-specific) functionalities.

ProtoRINA (Section II-A2) provides two sets of APIs, RIB

Daemon API and IRM API, for users to write management

(or regular) applications and to support new network manage-

ment policies. The RIB Daemon API is based on a publish/

subscribe model, which supports the creation and deletion of

a subscription event (a Pub or Sub event), the retrieval of

information through a Sub event, and the publication of infor-

mation through a Pub event. The RIB Daemon also supports

the traditional pulling mechanism to retrieve information. The

IRM API allows allocating/deallocating a connection (flow) to

other application processes, and sending/receiving messages

over existing connections.

More details about RINA programming APIs can be found

in [9].

IV. VIDEO MULTICAST WITH PROTORINA

In this section, we explain how video can be efficiently

multicast to different clients on demand as an example of

application-driven network management.

In order to support RTP (Real-time Transport Protocol)

video streaming over the RINA network, RTP proxies (server

proxy and client proxy) are used as shown in Figure 3. The

RTP server proxy is connected to the video server over the

Internet, and each RTP client proxy is connected to a video

client also over the Internet. The RTP server proxy and RTP

client proxies are connected over the RINA network which

consists of DIFs. Namely, the RTP server proxy redirects all

RTP traffic between the RTP server and RTP client to the

communication channel provided by the RINA network. In

our experiments, we use the VLC player [17] as the video

client, and the Live555 MPEG Transport Stream Server [18]

as the RTP video server. The video file used in the experiments

is an MPEG Transport Stream file, which can be found at [19].

RTP Client Proxy

VLC Client

RTP Server Proxy

Live555
RTP Server

RINA Network

Internet connection
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Fig. 3. Video clients (VLC players) are connected to the RTP video server
through RTP proxies over a RINA network

Figure 4 shows a scenario, where the whole network is made

up of four enterprise (or university) networks. The RTP server

and RTP server proxy are running in Network A, and they
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Fig. 4. Video server providing a live video streaming service is running in
Network A. One client is in Network C, and one is in Network D

provide a live video streaming service. There are two video

clients along with RTP client proxies (one in Network C

and the other one in Network D) that would like to receive

video provided by the RTP video server. Network A and

Network B are connected through DIF 1, Network B

and Network C are connected through DIF 2, and Network

B and Network D are connected through DIF 3. DIF

1, DIF 2 and DIF 3 are three level-zero DIFs that can

provide communication services for two connected networks.

For simplicity, the Live555 RTP server and VLC clients are

not shown in the following figures.
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Fig. 5. Video streaming through unicast connections, where same video traffic
is delivered twice over DIF 1 consuming unnecessary network bandwidth

A very simple way to meet clients’ requirements is as fol-

lows. Two video clients can receive live streaming service from

the video server through two unicast connections supported

by two separate DIFs as shown in Figure 5. The unicast

connection between RTP Client Proxy 1 and the video

server proxy is supported by DIF 4, which is a level-one DIF

formed based on DIF 1 and DIF 2. The unicast connection

between RTP Client Proxy 2 and the video server is

supported by DIF 5, which is a level-one DIF formed based



on DIF 1 and DIF 3. However, it is easy to see that the same

video traffic is delivered twice over DIF 1, which consumes

unnecessary network bandwidth. In order to make better use of

network resources, it is necessary to use multicast to stream

the live video traffic. Next we show two different solutions

of managing the existing DIFs to support multicast, i.e., two

ways of application-driven network management.

A. Solution One: Application-Level Multicast
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Fig. 6. Video multicast through an RTP multicast video server

The first solution is enabled through a video multicast video

server as shown in Figure 6. The connection between the

video server and the video multicast server is supported by

DIF 1. The connection between the video multicast server

and RTP Client Proxy1 is supported by DIF 2, and

the connection between the video multicast server and RTP

Client Proxy 2 is supported by DIF 3. The video server

streams video traffic to the video multicast server, which

multicasts video traffic to each client through two unicast

connections supported by DIF 2 and DIF 3, respectively.

We can see that the video traffic is delivered only once over

DIF 1 compared to Figure 5. In this case, we only rely

on existing level-zero DIFs, and no new higher-level DIF is

created.

Actually the video multicast server provides a VNF (Vir-

tual Network Function [2] ) as in NFV (Network Function

Virtualization), i.e., RINA can implicitly support NFV. In a

complicated network topology with more local networks, if

there are more clients from different local networks needing

the live streaming service, we can instantiate more video

multicast servers, and place them at locations that are close

to the clients, thus provide better video quality and network

performance (such as less jitter and bandwidth consumption).

B. Solution Two: DIF-level Multicast

The second solution is supported using the multicast service

provided by the DIF mechanism. As shown in Figure 7, we

form a level-one DIF DIF 4 on top of existing level-zero

DIFs. The video server creates a multicast channel through
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Fig. 7. Video multicast through multicast service provided by the DIF

DIF 4, and streams live video traffic over this multicast chan-

nel. Each client joins the multicast channel to receive the live

video traffic. Note that the allocation of a multicast connection

is the same as the allocation of a unicast connection, and both

are done through the same RINA API, i.e., IRM API.

Here we can see that RINA implicitly supports SDN [1]

by allowing the dynamic formation of new DIFs (virtual

networks), what’s more, it allows initiating different policies

for different DIFs. In a complicated network topology with

more local networks, if there are more clients from different

local networks accessing the live streaming service, we can

either dynamically form new higher-level DIFs or expand the

existing DIFs providing the multicast service.

V. EXPERIMENTS OVER GENI

GENI (Global Environment for Network Innovations) [20]

is a nationwide suite of infrastructure that supports large-

scale experiments, and it enables research and education in

networking and distributed systems. Through GENI, users can

obtain computing resources (e.g., virtual machines (VMs) and

raw PCs) from different physical locations (GENI aggregates),

and connect these computing resources with layer-2 (stitched

VLAN) or layer-3 (GRE Tunnel) links. GENI provides a

variety of tools such as jFed, Jacks, Omni, GENI Desktop,

LabWiki, etc, to configure, run and measure experiments. In

this section, we show our experimental results over GENI.

A. Bandwidth Usage

As shown in Figure 8, we reserve four VMs from four

InstaGENI aggregates (Rutgers, Wisconsin, Chicago and NY-

SERNet), and we connect the VMs using stitched VLANs.

Each aggregate corresponds to one network in Figure 4, where

the RTP server and RTP server proxy are running on VM

N1 in the Rutgers aggregate, the RTP Client Proxy 1 is

running on VM N4 in the Chicago aggregate, and the RTP

Client Proxy 2 is running on VM N3 in the NYSERNet

aggregate.



Fig. 8. GENI resources from four InstaGENI aggregates shown in Jacks

Figure 9 shows the bandwidth usage for the unicast solution

and the two multicast solutions over DIF1 (cf. Figure 4), i.e.,

the link between VM N1 in the Rutgers aggregate and VM N2

in the Wisconsin aggregate in Figure 8. We can see that, as

expected, the bandwidth usage for the two multicast solutions

are close to half of that of the unicast solution.
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Fig. 9. Comparison of bandwidth usage over DIF1: unicast vs. multicast

B. Video Quality

Fig. 10. GENI resources from five InstaGENI aggregates shown in Jacks

As shown in Figure 10, we reserve five VMs from five

InstaGENI aggregates (GPO, Chicago, NYSERNet, Stanford,

and Wisconsin), and we connect the VMs using stitched

VLANs. The RTP server and RTP server proxy are running on

VM N1 in the GPO aggregate, the RTP Client Proxy 1

is running on VM N3 in the Stanford aggregate, and the RTP

Client Proxy 2 is running on VM N5 in the Wisconsin

aggregate. The goal is to observe the effect on the video quality

at the video client side when placing the video multicast server

(cf. Section IV-A) in different locations, i.e. placing the video

multicast server either on VM N2 in the Chicago aggregate or

VM N4 in the NYSERNet aggregate.

Since GENI does not yet allow specifying parameters when

reserving stitched VLANs, such as capacity, packet loss and

latency, we use a network emulation tool, NetEm [21] to add

delay (1000ms ±500ms) on the link between VM N1 in the

GPO aggregate and VM N2 in the Chicago aggregate. In order

to observe video quality, we have VLC players running locally

on our BU campus network and connect them to the RTP client

proxies running on GENI aggregates (i.e., VM N3 and N5)

via Internet connections. Note that the jitter on the Internet

connections is negligible, and the jitter in our experiments is

mainly from jitter emulated on GENI links.

Fig. 11. Video observed when the video multicast server is placed on VM
N4 in the NYSERNet aggregate resulting in a path with less jitter

Fig. 12. Video observed when the video multicast server is placed on VM
N2 in the Chicago aggregate resulting in a path with more jitter

We run a VLC player locally and connect it with the

RTP Client Proxy 1 running on VM N3 in the Stanford

aggregate. Figure 12 shows the video observed when placing

the multicast server on VM N2 in the Chicago aggregate.

Figure 11 shows the video observed when placing the multicast

server on VM N4 in the NYSERNet aggregate. We can see that

by placing the video multicast server at a location experiencing

less jitter we can achieve better video quality.

VI. FUTURE WORK AND CONCLUSION

In this paper, we described how to achieve application-

driven network management using ProtoRINA. As an example,

we show how video can be efficiently multicast to many clients



on demand by dynamically creating a delivery tree. Under

RINA, multicast can be enabled through a secure communi-

cation container that is dynamically formed to support video

transport either through application proxies or via relay IPC

processes. We also highlighted RINA’s inherent support for

envisioned SDN and NFV scenarios. The experimental results

over the GENI testbed show that application-driven network

management enabled by ProtoRINA achieves better network

and application performance.

As future work, we plan to investigate how to build a RINA

network and compose policies given the physical topology

to achieve better network and application performance for

different applications. Also we plan to have our ProtoRINA

run on a long-lived slice (virtual network) over the GENI

testbed, and make a RINA network available to researchers

and educators so that they can opt-in and benefit from our

RINA architecture.
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