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Abstract—Nowadays there is an increasing need for a general
management paradigm which can simplify network management
and further enable network innovations. In this paper, in response
to limitations of current Software Defined Networking (SDN)
management solutions, we propose a recursive approach to
enterprise network management, where network management
is done through managing various Virtual Transport Networks
(VTNs). Different from the traditional virtual network model
which mainly focuses on routing/tunneling, our VTN provides
communication service with explicit Quality-of-Service (QoS)
support for applications via transport flows, and it involves all
mechanisms (e.g., routing, addressing, error and flow control, re-
source allocation) needed to support such transport flows. Based
on this approach, we design and implement a management layer,
which recurses the same VTN-based management mechanism for
enterprise network management. Comparing with an SDN-based
management approach, our experimental results show that our
management layer achieves better network performance.

I. INTRODUCTION

Traditionally network management is a complicated and
error-prone process that involves low-level and vendor-specific
configurations of physical devices. Nowadays computer net-
works have become increasingly complex and difficult to
manage, and new cloud-based service models [1] have become
the norm in networking economics. These trends increase the
need for a general management paradigm to simplify network
management and further enable network innovations. Making
the network programmable is an efficient way to address the
complexity of network management by providing high-level
network abstractions and hiding low-level details of physical
devices. Software Defined Networking (SDN) [2] has drawn
considerable attention due to the popularity of OpenFlow [3].
SDN focuses on programming the control plane through a
network management layer and has been widely deployed in
enterprise and data center networks [3], [4]. However SDN
management layers are plagued with limitations inherited from
the TCP/IP architecture [5].

In response to these limitations, we propose an application-
driven recursive approach to enterprise network management.
In our approach, network management is done through man-
aging various Virtual Transport Networks (VTNs), inspired
by and built atop a new network architecture, RINA [6], [7],
which aims to solve current TCP/IP limitations1. Different
from the traditional virtual network model which mainly
focuses on routing/tunneling, a VTN provides communication
service with explicit QoS support for applications via transport
flows, and it includes all mechanisms (e.g., routing, address-
ing, error and flow control, resource allocation) needed to

1A VTN is termed a DIF in [6], [7], to mean a Distributed Inter-Process
Communication (IPC) Facility.

support such transport flows. Furthermore VTN is application-
driven, where a VTN can be dynamically formed and in-
stantiated with different policies to meet different application-
specific requirements. One of the biggest advantages of VTN
is that it allows both flow aggregation and splitting, where
we can either aggregate multiple flows into one single flow or
split one flow into multiple flows, and it allows better resource
allocation and utilization in support of various requirements.

The contributions of this paper are: (1) we propose an
application-driven recursive approach to enterprise network
management, where network management is done through
managing various Virtual Transport Networks (VTNs); (2) we
present the design and implementation of a management layer2

based on our approach, which allows managing and dynamic
formation of such VTNs to support flow requests from regular
users and to meet application-specific requirements; (3) we
propose the VTN formation problem which aims to improve
network performance, and then give a practical solution to
it; and (4) we show the advantages of VTN-based manage-
ment through experimental results. The rest of the paper is
organized as follows. We review related work of SDN-based
management solutions in Section II. Details of our VTN-based
management approach are explained in Section III. Network
API and details of the protocol supporting our management
layer as well as implementation of our management layer are
described in Section IV and Section V, respectively. The VTN
formation problem and its solution are presented in Section VI.
Performance evaluation is presented in Section VII. In the end,
we conclude this paper with future work in Section VIII.

II. RELATED WORK

The core of an SDN-based management solution is the
management layer (such as [8], [9], [10], [11], [12]), and itself
does not manage the network but provides a global network
view and general programming interface (the so-called “North-
bound” API [13]) to management applications (designed or
programmed by network managers), which actually manage
the network. Access control, virtual machine (VM) migration,
traffic engineering, and routing are examples of management
applications. The network management layer translates high-
level network policies specified by the management appli-
cations into low-level and vendor-specific configurations of
network devices (switches or routers) through the OpenFlow
protocol [3] (or any of so-called “Southbound” API [13]).

SDN reduces management complexity by providing high-
level network abstractions. However most SDN management

2In this paper, we use the terms “management platform”, “management
layer” and “control platform” interchangeably.



layers (such as [8], [9]) only provide the management-level
interface, used by network managers to write management
applications to monitor and control the network. And they
lack a user-level interface, used by regular users to write
general applications (such as video application) and achieve
better performance for their applications. Another limitation
with SDN management layers is their lack of Quality-of-
Service (QoS) support as a consequence of their reliance on the
current TCP/IP architecture which is designed to only provide
best-effort service. QoS support is important because it can
not only improve the performance of user applications via
guaranteed services but also improve network performance via
better resource allocation. Although some management layers
(such as [12]) attempt to provide QoS support, so far there are
no common SDN mechanisms for QoS support.

Network virtualization allows multiple isolated virtual net-
works to be built on top of the same physical infrastructure.
It can improve resource utilization through network consol-
idation and provide isolation for security purposes or for
developing and testing new network features. Some SDN
management layers (such as [10], [14], [15], [16]) support
network virtualization, but they mainly focus on routing and
access control, and do not consider other mechanisms (such
as error and flow control and resource allocation) for transport
purpose, which is important for network resource utilization.

Essentially SDN is still a flat management solution which
lacks levels of management scope, and every component
(physical components such as routers or switches, and logical
components, i.e., processes) is part of the same and only
management scope. It is not easy to dynamically define new
(higher-level) management scopes over existing management
scopes. Most of these problems are due to reliance on the
TCP/IP architecture [5], which notably lacks resource allo-
cation and flow/error control over limited scopes. There is
existing SDN work that provides recursive control (e.g., [17],
[18]), but it lacks transport-level flow/QoS control over limited
scopes and does not support dynamic management of these
scopes.

III. DESIGN

In this section, we explain the design of our VTN-based
approach for enterprise network management, and present the
components of our management layer. Different from SDN
which is mainly based on the TCP/IP architecture, our ap-
proach is inspired by and built on top of a new network archi-
tecture, the Recursive InterNetwork Architecture (RINA) [6],
[7]. RINA is based on the principle that networking is Inter-
Process Communication (IPC) and only IPC. RINA solves
shortcomings of the TCP/IP architecture by addressing the
communication problem in a more fundamental and structured
way. RINA provides communication services via transport
flows by using a recursive building block (which we call
VTN). The building block involves all kinds of mechanisms
(e.g., enrollment, authentication, routing, addressing, error and
flow control, resource allocation) to support transport flows of
a certain scope.

Our contribution over existing work on RINA is that we
exploit the usage and benefits of such building block for
the purpose of network management, and further optimize its
placement to improve network management.

A. Virtual Transport Network (VTN)

A Virtual Transport Network (VTN) is the basic building
block in our network management. The job of a VTN is to
provide communication service with QoS support via transport
flows for user applications. Unlike a regular virtual network
which mainly focuses on routing/tunneling, a VTN involves all
kinds of mechanisms (e.g., enrollment, authentication, routing,
addressing, error and flow control, resource allocation) needed
to support transport flows over a certain management scope.
A transport flow provides end-to-end communication service
with QoS parameters, which differs from a tunnel which is
usually hard-coded, and just provides best-effort service over
an overlayed routing path (tunnel) without resource allocation,
flow and error control.

A transport process is a process that is capable of establish-
ing transport flows across the VTN at requested QoS levels.
Each VTN consists of a set of transport processes which run
on different hosts (or switches), and the operations of its
member processes are contained in the VTN itself. VTN is
a secure container, where every process has to be explicitly
enrolled through an authentication procedure [6], [7]. Each
transport process contains a data transfer component support-
ing transport flows between different applications. And the
VTN provides communication service to application processes
by exposing a flow allocation interface.

Each VTN has its management scope, i.e., each VTN
includes a limited number of transport processes running on
a limited number of physical hosts. And each VTN maintains
the mapping between applications and transport processes,
i.e., application name resolution within its scope. The same
VTN mechanism can be repeated to provide a larger-scope
transport service for applications by recursively using the
smaller-scope transport service provided by existing VTNs.
Namely, we can build VTNs of different levels to provide
transport services over different scopes. Different VTNs use
the same mechanisms but may use different network policies
(e.g., policies for routing and error and flow control), and
the transport processes inside the same VTN follow the same
policies specific to the particular VTN.
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Fig. 1: Two levels of VTNs, and VTN 3 spans a larger scope. Each
process inside a VTN is a transport process.

Figure 1 shows a simple example of VTNs providing
transport service over different scopes. VTN 1 and VTN 2
each spans a smaller scope, and can provide transport services



to applications inside its scope. If an application App 1 in one
scope wishes to communicate with another application App 2
in another scope, and since VTN 1 and VTN 2 cannot satisfy
such request, we need a higher level VTN 3 which spans both
scopes and provides a transport service across the larger scope.
Recursively, we can repeat VTN to provide an even larger-
scope transport service, i.e., any two application processes
can communicate as long as a common underlying VTN can
be found or built.

One advantage of VTN is that it explicitly provides QoS
support when applications request a transport service. It is
important to regular users, as they can know what kinds of
service they can get ahead of time, and use this information
to improve their application performance. It is also important
to network managers, as they can predict more accurately
resource consumption, do better resource allocation and ul-
timately achieve better network utilization.

Another advantage is that VTN provides the opportunity to
control management complexity. Each VTN has its own scope,
and can be managed without interfering with the operations of
other VTNs. By allowing the dynamic formation of VTN, we
can either break a larger (lower-level) management scope into
smaller ones or aggregate smaller scopes into a larger one.
This gives us more flexibility for network programmability
compared to existing SDN platforms.

What’s more, VTN allows flow aggregation which can help
reduce the memory usage in switches, as well as achieve better
resource utilization. Most OpenFlow switches use TCAM
(Ternary Content Addressable Memory [19]) to store flow
forwarding entries (rules) to increase packet processing speed,
but TCAM is expensive and has limited storage capacity.
Consequently, SDN management layers have to deal with the
TCAM problem by reducing the number of flow rules. Most
SDN work (such as [20], [21], [22], [23]) focuses on flow
rules for access control or firewalling, however, due to SDN’s
reliance on the TCP/IP architecture, nothing much can be done
to reduce the number of flow rules for end-to-end routing
purpose other than using shortest path routing [24].
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Fig. 2: (a) n application flows going through 4 switches (S1, S2, S3
and S4). (b) n non-aggregatable application flows can be aggregated
into one flow by VTN.

A simple scenario is shown in Figure 2(a). For SDN, if these
n flows are not aggregatable due to distinct IP prefixes and port
numbers (i.e., wildcard rules cannot apply), we need a total
number of 4 × n forwarding rules in switches. It gets worse
as the number of non-aggregatable flows increases. However
with VTN, we can aggregate these n flows into one flow f as
shown in Figure 2(b), so we do not need a flow rule for each

of the n flows in each switch but rather only one rule for the
aggregate flow. Thus the total number of flow rules needed are
4 rules for the aggregated flow, and n rules for multiplexing
and n rules for demultiplexing, at the source and destination
switches, respectively, for a total of 2n+ 4.

Flow aggregation enabled by VTN also improves resource
utilization. Consider the example in Figure 2(a) again, where
each flow asks for a guaranteed throughput, and let Xi (i =
1, ..., n) be the instantaneous traffic demand of each flow.
Assume the instantaneous traffic demand for each flow follows
the same uniform distribution, where the maximum instanta-
neous throughput is max, mean throughput is µ and standard
deviation is σ. Assume for each flow we reserve a bandwidth
of η × max, where η ∈ [0, 1] denotes the effective per-
flow bandwidth requirement. Assume the QoS requirement
is defined as the probability (denoted by 1 − ε) that the
instantaneous traffic demand for all flows does not exceed the
reserved total bandwidth.

For SDN-based management layers without flow aggrega-
tion, to satisfy this QoS requirement, we need

n∏
i

Prob(Xi ≤ η ×max) > 1− ε (1)

For our VTN-based management layer with flow aggrega-
tion, according to the Central Limit Theorem, the aggregated
instantaneous flow rate follows a normal distribution, and to
satisfy the same QoS requirement, we only need

Prob


n∑
i
Xi

n
≤ η ×max

 > 1− ε (2)

We can easily see that for the same 1 − ε, we need
a bigger η to satisfy (1) than (2). That means using our
VTN-based management layer with flow aggregation, we can
satisfy the same QoS requirement with less per-flow bandwidth
reservation. Namely we can serve more flow requests given
limited link capacity.
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Fig. 3: Effective per-flow bandwidth requirements for different QoS.

Next we show this advantage through an example. Assume
on average there are n flows between a pair of switches,
which can be aggregated into one flow by a higher-level VTN,
and the instantaneous traffic demand of each flow follows a
uniform distribution between 0 Mbps and 1 Mbps. Figure 3
shows the effective per-flow bandwidth requirement (i.e., η) to



satisfy different QoS requirements (i.e., 1 − ε). For the same
n, SDN solutions require more effective per-flow bandwidth
requirement (almost close to 100% of the peak demand for
higher QoS) than our solution. Also Figure 3 shows that with
our solution, as the number of aggregated flows increases, the
effective per-flow bandwidth requirement decreases to satisfy
the same level of QoS3. This shows that the more flows
that are aggregated, the better performance our management
layer achieves. Similar advantage of flow aggregation was also
shown in previous work [25].

B. Management Components
Next we explain the components (i.e., distributed applica-

tions) for managing (1) a single VTN; and (2) all VTNs.
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Fig. 4: VTN Manager and its agents for a single VTN.

1) VTN Manager and VTN Manager Agent:
As shown in Figure 4, the distributed application for man-

aging a single VTN includes a VTN Manager and its VTN
Manager Agent. Every VTN has a VTN manager, which is a
process that can be implemented in a centralized or distributed
fashion, and it manages the whole VTN by specifying different
network policies inside the VTN such as routing, access
control, and transport policies. A VTN manager agent is part
of each transport process inside the VTN, and it exposes a pro-
grammable interface for the VTN manager to translate high-
level network policies to transport process’s configurations.
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Fig. 5: VTN Allocator and its agents for an enterprise network.

2) VTN Allocator and VTN Allocator Agent:
As shown in Figure 5, the distributed application for

managing all VTNs inside the enterprise network includes a
VTN Allocator (VA) and its VTN Allocator Agent (VAA). The
network has one VA, which is a management process that
can be implemented in a centralized or distributed fashion,
and it manages all VTNs as a whole. Each host (switch)
inside the network has a VAA, which exposes a programming
interface allowing the VA to create new transport processes
on the host and thus build new VTNs across multiple hosts
within the network. VA manages the network by managing
existing VTNs and building new VTNs dynamically to support
different application flow requests.

3Proof is skipped due to space limitation, but it is straightforward to prove
using the Central Limit Theorem.

3) VTN Resource Manager (VRM):
Every application process has a component called VTN

Resource Manager (VRM), which manages the use of all VTNs
available to this particular process. It is the job of VAA of
the host to decide which VTNs are accessible to particular
processes. An application process uses its VRM to allocate
transport flows with QoS requirements to other processes, and
the VRM in turn passes the flow allocation requests to VTNs
via the flow allocation interface exposed by VTN.

C. Walk-through of Transport Flow Allocation
When an application wants a transport flow with a certain

QoS requirement to another application process, it uses the
flow allocation interface exposed by its VRM. When the VRM
gets the request, it first checks whether any of its available
VTNs can reach that application. If the VRM finds such a
VTN, it uses the VTN interface to allocate the flow through the
transport process belonging to that VTN on the same host. If
no VTN is found, the VRM sends the flow request to the VAA
of the host, which then forwards the flow request to the VA of
the network, and eventually the VA determines how to build a
new VTN which consists of new transport processes running
on the source host, destination host and some intermediate
hosts.
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Fig. 6: (a) An enterprise network consists of three hosts (Node 1,
Node 2 and Node 3), and a centralized VTN Allocator. (b) A new
VTN (VTN 3) is formed to support the flow between App 1 and
App 2. VAA of each node is not shown in (b).

As shown in Figure 6(a), when App 1 on Node 1 asks its
VRM (not shown) for a flow to App 2, and its VRM cannot
find an existing VTN to reach App 2, App 1’s VRM then sends
the request to Node 1’s VAA, which forwards the request to the
VA. The VA figures out that a new VTN is needed to support
the flow, then it builds a new VTN (VTN 3) spanning all three
nodes (Figure 6(b)). After the new VTN is ready, the VAA of
Node 1 notifies the VRM of App 1, which eventually uses this
new VTN (VTN 3) to create a flow to App 2. Note than links
between processes of VTN 3 constitute virtual transport links
and not simply routing tunnels.

IV. NETWORK API
Our management layer provides two sets of APIs: (1) the

management-level API, used by network managers to manage
the network by programming the VTN Allocator and VTN
Manager; and (2) the user-level API, used by regular users to
program their own applications, and it helps users affect their
application traffic to improve user application performance.



A. Management-level API

Our management-level API includes three sets of APIs as
shown in Table I, where the VTN formation API (1) is our
new design, and (2) and (3) are existing RINA APIs [7] but
reproduced here for completeness.

(1) VTN Formation API
public boolean createVTN (VTNRequest vtnRequest);
public boolean deleteVTN (VTNRequest vtnRequest);
(2) Flow Allocation API
public int allocateFlow(Flow flow);
public boolean deallocateFlow(int handleID);
public void send(int handleID, byte[] msg) throws Exception;
public byte[] receive(int handleID);
(3) Network Information API
public int createEvent(SubscriptionEvent subscriptionEvent);
public boolean deleteEvent(int subscriptionID);
public Object readSub(int subID);
public void writePub(int pubID, byte[] obj);

TABLE I: Three sets of management-level APIs in Java.

1) VTN Formation API: VTN Allocator Agents (VAAs)
expose the VTN Formation API (shown in Table I (1)), which
is used by the VTN Allocator (VA) to create new VTNs or
delete existing VTNs. A VTN is instantiated with different
policies such as routing policies, addressing policies and flow
and error control policies.

2) Flow Allocation API: The VRM of each application
process (cf. Section III-B3) exposes the Flow Allocation API
(shown in Table I (2)), which is used to create/delete transport
flows with QoS requirements as well as to send/receive data
messages over existing flows between management applica-
tions.

3) Network Information API: Based on a publish/sub-
scribe model (a pulling mechanism to retrieve information
is also supported), the Network Information API (shown
in Table I (3)) allows management applications to retrieve
or publish network information from/to other management
applications. This API (similar to NIB API in Onix [9]) allows
management applications to access network information.
B. User-level API

The user-level API includes two sets of APIs: (1) the Flow
Allocation API; and (2) the Network Information API. They
are the same as the ones in the management-level API.

V. VTN FORMATION PROTOCOL AND IMPLEMENTATION

New VTNs may need to be formed in support of transport
flows (Section III-C). In this section, we explain how the VTN
Allocator (VA) and VTN Allocator Agent (VAA) interact with
each other via a VTN formation protocol to create new VTNs.
A. Objects Exchanged in the Protocol

The key aspect of the VTN formation protocol is two objects
exchanged between the VA and VAA.

(1) Flow Request Object. The VAA on a host sends a
flow request object to the VA when a certain transport flow
cannot be supported using existing VTNs on the host. The flow
request object specifies the source and destination application
information as well as QoS requirements including throughput,
delay, and loss rate. The flow request object also supports

advanced flow requirements (policies) such as which hosts to
bypass or go through, or whether encryption is needed or not.
The flow policies inside the request object are specified when
the application uses the Flow Allocation API (shown in Table I
(2)) exposed by its VRM to allocate the transport flow.

(2) VTN Request Object. The VTN request object supports
two operations: VTN creation and deletion. A VA sends a
VTN request object to multiple VAAs on different hosts once
it determines how the new VTN should be formed, i.e., the
new VTN should have new transport processes running on
which hosts. The VTN request object specifies policies for
the new VTN, including policies for routing, addressing, error
and flow control, etc. Also it supports other policies such as
which application can use this VTN, the lifetime of this VTN
as well as resource allocation policies. Furthermore, the VTN
request object can specify the connectivity among transport
processes, and the enrollment and authentication policies for
new transport processes to join the VTN.

B. Protocol Details

A new VTN needs to be formed when existing VTNs cannot
satisfy a new transport flow request. Next we explain how the
VTN formation protocol works step by step. When the VA
receives a flow request object from a VAA, it first inspects
the object to see if it is a valid request. If valid, it checks the
network state and determines whether there exists a path (a
chain of hosts) from the host where the source application runs
to the host where the destination application runs. Once a path
is found, the VA can decide which hosts the new VTN should
span, i.e., the design of the VTN. We call this procedure
(including finding a path and designing the new VTN) the
VTN Formation Problem (details in Section VI).

Once the VA determines the design of the new VTN, it
sends the VTN request object specifying the policies of the
new VTN to all VAAs of the hosts along the path (including
source and destination hosts). When a VAA receives the VTN
request, it first inspects the object to see if it is a valid request.
If valid, the VAA creates a new transport process as a member
of the new VTN, then the VAA sends a VTN response to the
VA indicating that the new transport process on this host is
ready. After the VA receives the responses from all VAAs to
which it sent the VTN request, and if all responses indicate
that all new transport processes are ready, the VA sends a flow
response to the VAA that sent the initial flow request indicating
that a new VTN is ready and the associated VRM can use it
to create the transport flow. If any of the VAA’s responses
indicates failure of the creation of the new transport process,
the VA sends a VTN delete request to all other VAAs to delete
the newly created transport processes for that VTN. Then the
VA sends a negative flow response to the VAA that asked for
the new transport flow indicating that the flow request cannot
be satisfied.

C. Implementation of VTN-Based Management Layer

We extend the RINA prototype, ProtoRINA [7], to support
the dynamic formation and scoped management of VTNs.



We have tested our implementation both on our local campus
network and on the GENI testbed [26]. We plan to release our
code extension upon acceptance of this paper. Both network
managers and regular users can use our implementation to
achieve either better network or application performance.

VI. VTN FORMATION PROBLEM

Next we explain the VTN formation problem for the VA
which determines the design of the new VTNs needed to
support new transport flow requests, and we also give a
practical solution to it. To the best of our knowledge, our
paper is the first to formulate the flow allocation problem as
a VTN formation problem. In this paper, we focus on solving
the VTN formation problem for a batch of flow requests. The
online case can be solved either as a special case of the batch
case with only one request, or by queuing requests until a
certain queue length is reached, then solve the batch case.

Notations for Level-(n− 1) Network Topology
Gn−1 = 〈V,En−1〉 level-(n− 1) network topology

V = {vi} set of switches
vi switch vi

En−1 = {est} set of links between switches
est (virtual) link between switches s and t
Cst capacity (both directions) of link est ∈ E

Notations for Flow Request
F = {fn} set of all flow requests
N = |F | total number of flow requests
b(fn) bandwidth required for flow n

P (fn) = {pnk} set of possible paths for flow n
|P (fn)| number of possible paths for flow n
p(fn) path selected for flow n
l(pnk ) length of path k for flow n

F ′ = {fm} set of accepted flow requests after path selection
|F ′| number of accepted flow requests
p(fm) path selected to serve flow fm
|p(fm)| length of the path selected to serve flow fm

Notations for VTN
Dn−1 = {Dz} set of existing VTNs of and below level-(n− 1)

|Dn−1| number of existing VTNs of and below level-(n− 1)
Dz = 〈Vz, Ez〉 VTN z
Vz = {vzs} set of transport processes in VTN z

vzs transport process s in VTN z (running on some switch vi)
Ez = {ezst} set of (virtual) links in VTN z

ezst (virtual) link between processes s and t in VTN z

TABLE II: Notations for the VTN formation problem.
The notations used are shown in Table II. The VTN (recur-

sive) formation problem has two stages: (1) the path selection
stage, where a path on the given level-(n − 1) topology4 is
selected for each given flow request; and (2) the VTN design
stage, which determines the number of level-n VTNs needed
and which hosts (switches) should have transport processes
for each VTN. Note that the VTN formation problem can
be applied recursively if level-n VTNs cannot satisfy flow
requests due to limited scope. Initially, transport over each
physical link is provided by a level-0 VTN, which only has
two transport processes, one on each end of a physical link.
So for the base case of our recursion, the level-0 network
topology is given by the virtual links supported by level-0
VTNs and hosts running level-0 VTN transport processes. For
the inductive case (level-n, n ≥ 1), the given topology is
a virtual topology, where each link between two hosts is a

4For Gn = 〈V,En〉, where n ≥ 0, V is the same for all n since V is the
set of switches. En represents the set of all virtual links, which grows as we
build more (higher-level) VTNs.

virtual link, and two hosts have a (virtual) link between them if
they have transport processes belonging to a common existing
underlying level-(n− 1) VTN.

For example, in Figure 6(a), Node 1 and Node 3 do not have
a (physical or virtual) link between them. The level-0 virtual
topology consists of two virtual links: one between Node 1
and Node 2 (supported by VTN 1), and another between Node
2 and Node 3 (supported by VTN 2). But VTN 3 is formed
through Node 2 in Figure 6(b). Figure 6(b) now has two levels
of topologies. The level-1 topology has one more virtual link
provided by VTN 3, and App 1 and App 2 can readily use it
to communicate.

Our algorithms only focus on two levels of VTNs, i.e.,
level-(n − 1) and level-n, but by recursion we can build as
many levels of VTNs as needed. The VTN formation problem
is recursively solved when the network manager would like
to serve a new batch of flow requests on top of the existing
higher-level (virtual) network topology.

A. Stage I: Path Selection Stage

Given a network topology Gn−1 =< V,En−1 >5 and a
total of n flow requests, the goal is to find a path (if possible)
for every flow request satisfying its throughput requirement6.
This path selection can be formulated as an Integer Linear
Programming (ILP) problem as shown in Table III. In this
problem, Onk = 1, if p(fn) = pnk (i.e., among all possible
paths for fn, path k is selected); otherwise 0. The objective
function is to maximize the number of flow requests served
while seeking paths with shorter length (by using the inverse
of path length as weight) for each flow as long as the link
capacity constraints are satisfied. Line (1) guarantees only one
path is selected (if possible) for each flow fn. In Line (2),
χstn = 1 if est ∈ p(fn) (i.e., link est is on the path selected
for fn); otherwise 0. Line (2) guarantees that the bandwidth
requirements of all flows going through a link do not exceed
the capacity of that link.

Objective: maximize
N∑

n=0

|P (fn)|∑
k=0

On
k ×

1

l(pnk )
, such that

∀fn ∈ F :
|P (fn)|∑
k=0

On
k ≤ 1 (1)

∀est ∈ E :
N∑

n=0
b(fn)× χst

n ≤ Cst (2)

TABLE III: Path selection formulated as an ILP problem.

We are able to use CPLEX[27] to solve the ILP problem in
Table III. Note that some flow requests may not be served
due to link capacity constraints, but with aggregation we
can satisfy the same QoS requirement with less effective
bandwidth usage (cf. Figure 3). Thus after aggregation we have
more capacity left and in turn we are able to accept more flow
requests. So after solving the current ILP problem, we compute

5In this paper, our path selection is done over the level-0 network topology
G0 =< V,E0 >, which is a one-to-one mapping to the physical topology.

6In this paper, we use throughput as an example of QoS support. Other
features such as latency and packet loss can be easily considered.



the effective bandwidth usage on each link (cf. Equation 2) and
update its link capacity Cst. Then we repeat solving the path
selection problem in Table III using CPLEX for the unaccepted
flow requests based on the new residual link capacity. This
procedure is stopped when no more flow requests can be
accepted or all flow requests have been accepted.

In the end, the set of all flow requests that can be accepted
is denoted as F ′. And the accepted flow requests which are
mapped on the same level-0 path between the same pair
of source and destination switches can be aggregated into
one flow.7 Each fm ∈ F ′ will be then supported by some
VTN which is designed in the next stage. In other words,
all accepted flows mapped on the same level-0 path are all
supported by a single path in some level-n VTN, where each
(virtual) link of that VTN is supported by a flow through
one level-(n − 1) VTN. Through aggregation we can accept
more flow requests while reducing the number of forwarding
entries installed on the intermediate switches as discussed in
Section III-A.

B. Stage II: VTN Design Stage

In this stage, we determine how many new VTNs need to
be formed on top of an existing level-(n−1) network topology
(i.e., Gn−1) and existing level-(n − 1) VTNs (i.e.,Dn−1),
and determine which hosts each new VTN has to span to
support each fm ∈ F ′, where F ′ is the set of flow requests
that are accepted after the previous stage. The outputs of this
stage are: (1) a set of new VTNs, (i.e., {Dz}), (2) the host
(vi) that each new transport process in each VTN (i.e., vzs )
is assigned to, and (3) how each new process is connected,
i.e., virtual links ({ezst}) in each VTN. Note that a new VTN
may need to be supported by multiple level-(n− 1) VTNs as
shown in Figure 6(b). The goal of the VTN design stage is
to support all fm ∈ F ′ with the least number of new VTNs
(and corresponding new transport processes), which minimizes
the required resources as each new transport process in a new
VTN consumes a certain amount of host resources such as
CPU and memory.

A greedy recursive VTN design algorithm8 is shown in
Algorithm 1. In this algorithm, a VTN is designed to support
each fm ∈ F ′ if the VTN has transport processes on each
host along the path (i.e., p(fm)), and there is a (virtual) link
between processes on each pair of neighboring hosts along the
path. So for fm ∈ F ′, the corresponding level-n VTN needs
to span all hosts along the path, and the flow is mapped to
a path in this level-n VTN, where each link on this path is
supported by a flow in one level-(n− 1) VTN.

Assume each VTN can have at most M (M ≥ 2) transport
processes. By setting different values for M , we could decide
the total number of newly created VTNs as well as their size.
Namely, a larger M yields larger management scopes, and
a smaller M yields smaller ones. Let us denote ∆(fm, Dj)

7In practice, we aggregate a set of aggregatable flows if the aggregated
flow uses less memory entries than without aggregation.

8The VTN design problem can be proved to be NP hard by reduction from
the knapsack problem. We skip the proof due to space limitation.

as the number of new transport processes to be added to an
exiting VTN Dj so that Dj can support fm. For example,
assume p(fm) includes 5 hosts, and Dj already has transport
processes on 3 of these hosts, then ∆(fm, Dj) is 2.

Algorithm 1 VTN Design (F ′, Gn−1, D
n−1,M )

1: t = |F ′|, En = En−1, Dn = Dn−1

2: while t > 0 do
3: get a fm ∈ F ′ with largest |p(fm)|
4: if any existing Dk in Dn has processes on all vi ∈ p(fm) then
5: add links to Dk and En, for each pair of neighbors in p(fm)
6: F ′ = F ′/fm
7: else
8: get a Dj ∈ Dn with largest ∆(fm, Dj)
9: if (|Vj |+ ∆(fm, Dj)) ≤M then

10: for all vi ∈ p(fm) do
11: if no existing process in Dj is assigned to vi then
12: s = |Vj |+ 1, Vj = Vj ∪ vjs and assign vjs to vi
13: end if
14: end for
15: add links to Dj and En, for each pair of neighbors in p(fm)
16: F ′ = F ′/fm
17: else
18: if |p(fm)| ≤M then
19: l = |Dn|+ 1, Vl = φ
20: for all vi ∈ p(fm) do
21: s = |Vl|+ 1, Vl = Vl ∪ vls, and assign vls to vi
22: end for
23: add links to Dl and En, for each pair of neighbors in p(fm)
24: Dn = Dn ∪Dl, and F ′ = F ′/fm
25: else
26: fm cannot be supported by the current level
27: end if
28: end if
29: end if
30: t = t− 1
31: end while
32: Merge V TN(Dn,M )
33: if F ′ = φ then
34: Return Gn =< V,En > and Dn

35: else if F ′ 6= φ then
36: V TN Design (F ′, Gn, D

n,M)
37: end if

We may use an existing VTN (lines 4-6) or expand an
existing VTN (lines 8-16) to support a flow, as long as the
number of transport processes in that VTN does not exceed
M . If we cannot support this flow using existing VTNs, we
create a new VTN (lines 19-24). Note that due to the limitation
of M (line 18), we may need to build a VTN of even higher
level to serve a flow fm (line 26), and this is done by the
recursive call in line 36. As we have more levels of VTNs,
we would have more (virtual) links (lines 5, 15 and 23) and
yield higher level paths with smaller length. But in this paper,
we focus on building only one more level of VTNs (i.e., level-
1 VTNs) by choosing an M value that is larger than |p(fm)|
for all fm (line 18).

At the end of each recursion call, we try to further reduce
the number of VTNs by merging existing VTNs in the same
level (line 32) using Algorithm 2. Two VTNs can be merged if
the number of transport processes in the merged VTN does not
exceed M . After this stage, a set of new VTNs is designed, and
the VA of the network generates corresponding VTN request
objects (cf. Section V-A) and sends them to VAAs to build
new VTNs by creating new transport processes on their hosts.

VII. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
our VTN-based management layer.



Algorithm 2 Merge VTN (Dn,M )
1: D = Dn, Dn

m = φ
2: while |Dn

m| 6= |D| do
3: pick a Di ∈ Dn where Di /∈ Dn

m
4: while |Di| < M do
5: if ∃Dj ∈ Dn, where i 6= j and Dj /∈ Dn

m and |Vi ∪ Vj | ≤M then
6: Di = Di ∪Dj , Dn = Dn/Dj , Dn

m = Dn
m ∪Dj

7: else
8: break // exit inner while loop
9: end if

10: end while
11: Dn

m = Dn
m ∪Di

12: end while

A. Comparison with SDN-based Solutions

As mentioned in Section III-A, our VTN-based management
layer allows aggregation of flows that cannot be aggregated
using SDN-based management layers due to distinct IP pre-
fixes and port numbers. Flow aggregation helps achieve better
resource utilization to accept more flow requests and reduce
memory usage in switches for storing forwarding rules.

We use BRITE [28], a topology generation tool to generate
an enterprise network (50 switches and 200 directed links)
using the Waxman model (α = 0.15 and β = 0.2), and then
randomly generate flow requests between pairs of switches.
Each physical link has a capacity of 100 Mbps, and each flow
request has an instantaneous traffic demand which follows a
uniform distribution between [0, 1] Mbps. Assume the QoS
requirement (cf. 1−ε in Equations (1) and (2) in Section III-A)
for each flow request is 90%.
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Fig. 7: Acceptance ratio of flow requests, where 1− ε = 90%.

1) Flow Request Acceptance Ratio: Because of aggre-
gation, our management layer is able to satisfy the same QoS
requirement with less bandwidth reservation, and thus can
accept more flow requests. Figure 7 shows the acceptance
ratios for different number of flow requests. When the number
of flow requests is less than 5, 000, both VTN and SDN
solutions can accept all flow requests (i.e., acceptance ratios
are both 100%) since the total traffic demand is less than the
network capacity. But as the number of flow requests increases
(higher traffic demand), we can see that our solution has a
higher acceptance ratio than an SDN-based solution.

2) Memory Usage: Our management layer is able to save
memory usage in switches for storing forwarding rules due to
aggregation. Figure 8 shows the average number of memory

entries needed to serve each flow as the number of flow
requests increases. We can see that our VTN-based solution
has less per-flow memory usage compared to an SDN-based
solution. Also we can see that as the number of flow requests
increases, per-flow memory usage decreases for our VTN-
based solution. This is because more flows can be aggregated,
i.e., the higher the number of flow requests, the better perfor-
mance our VTN-based management layer achieves. Note that
per-flow memory usage for the SDN-based solution (which
depends on average path length) also decreases, and this is
because the flow requests are randomly generated, and the
average path length of flows accepted decreases as we have
more flow requests.
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Fig. 8: Average # of memory entries needed for each flow served.

3) Number of New VTNs: Figure 9 shows the average
number of new VTNs created per 1000 flows served for
different values of M (i.e., maximum number of processes
allowed in a VTN) obtained using the VTN design algorithm
(Algorithm 1). We can see that as the number of flow requests
increases, the number of new VTN needed per 1000 flows
served decreases. Also as expected, the higher the number of
processes allowed in a new VTN, the less the number of VTNs
needed.
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Fig. 9: Number of new VTNs created per 1000 flows served for
different values of M .

Due to space limitation, we only show the comparison for
a network with 50 switches, but our comparisons for larger
networks and more flow requests show similar results.

B. Experiments on the GENI Testbed
GENI [26] is a nationwide infrastructure that allows large-

scale networking experiments. In our experiment, we reserve



21 VMs from the Clemson aggregate, and connect them as
an enterprise network, which is managed by our VTN-based
management layer. We have a centralized VA running on one
VM. We define the time needed to build a VTN as the time it
takes to successfully create transport processes on all hosts that
this VTN needs to span. We measure the time needed to build
a new VTN of different sizes assuming this VTN is needed
to support flows between different number of pairs of hosts.
For each given size of VTN, we run the experiment 5 times,
and Figure 10 shows the mean and standard deviation of the
time to build the VTN as the size of the new VTN increases
from 2 to 20. We observe, as expected, that as the size of the
VTN increases, more time is needed. Also the time increases
almost linearly with respect to the size of VTN. Practically,
we may not always need to create new VTNs from scratch,
and we can form a bigger VTN by expanding one of existing
VTNs.
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Fig. 10: Time needed to build a VTN of different sizes.

Our current implementation of the VA builds the new VTN
in a sequential manner, i.e., the VA sends the VTN request to
the VAA of the first host, and only after the transport process
is ready on that host, the VA sends the VTN request to the
next host until a new transport process is ready on every host
needed. Obviously, if the VA sends requests in a concurrent
manner, less time will be needed to build the new VTN. Also
by creating multiple VTNs in a concurrent manner, less time
will be needed to build multiple VTNs following the outputs
of the VTN design stage in Section VI-B.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a recursive application-driven
approach to network management in response to the limita-
tions of current SDN-based management solutions. Our ap-
proach manages the network using Virtual Transport Networks
(VTNs), where each VTN is a virtual network that can provide
communication service via transport flows with explicit QoS
support. A VTN can be dynamically formed and instantiated
with different policies to satisfy different application-specific
requirements. We present the design and implementation of a
management layer based on our approach, and we also propose
a VTN formation problem along with a practical solution,
which aims to improve network performance. In the end we
show the performance and advantages of our management
layer through experimental results.

Our future work includes overlaying our RINA-based im-
plementation over OpenFlow [3] switches. We will further

investigate the benefits of using VTNs on resource allocation
and application performance. We also plan to explore the VTN
formation problem proposed in this paper from an algorithmic
perspective.
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