
Programming Routing Policies for Video Traffic

Yuefeng Wang Nabeel Akhtar Ibrahim Matta
Computer Science Department, Boston University

Boston, MA 02215
{wyf, nabeel, matta}@bu.edu

Abstract—Making the network programmable simplifies net-
work management and enables network innovations. The Recur-
sive InterNetwork Architecture (RINA) is our solution to enable
network programmability. ProtoRINA is a user-space prototype
of RINA and provides users with a framework with common
mechanisms so a user can program recursive-networking policies
without implementing mechanisms from scratch.

In this paper, we focus on how routing policies, which is an
important aspect of network management, can be programmed
using ProtoRINA, and demonstrate how ProtoRINA can be used
to achieve better performance for a video streaming application
by instantiating different routing policies over the GENI (Global
Environment for Network Innovations) testbed, which provides
a large-scale experimental facility for networking research.

I. INTRODUCTION

Computer networks are becoming increasingly complex
and difficult to manage, and the research community has
been expending a lot of efforts to address the complexity of
network management. Making the network programmable, as
exemplified by recent research in Software Defined Network-
ing (SDN) [1], simplifies network management and enables
network innovations. Many management layers (platforms)
have been proposed to program SDN networks, however,
they are plagued with limitations inherited from the TCP/IP
architecture. As we show in [2], our Recursive InterNetwork
Architecture (RINA) [3], [4] provides a promising approach to
network programmability, and as a consequence, to achieving
better network manageability.

The RINA architecture is a new architecture that inher-
ently solves shortcomings of the current (TCP/IP) Internet
architecture—for example, TCP/IP’s path-dependent address-
ing makes it hard to support mobility, and its rudimentary
“best-effort” service does not accommodate quality-of-service
(QoS) requirements. By separating mechanisms and policies,
RINA enables policy-based programming of the network.
Also RINA’s recursion of the inter-process communication
(IPC) service over different scopes yields a better service
management framework [5]. ProtoRINA [6], [7], [8] is Boston
University’s user-space prototype of RINA. ProtoRINA offers
a framework with common mechanisms that enables users to
program recursive-networking policies without implementing
mechanisms from scratch.

GENI (Global Environment for Network Innovations) [9]
is a nationwide suite of infrastructure that enables research
in networking and distributed systems, and it supports exper-
imentation with future network architectures, such as RINA,

for possible deployment.
Our contributions in this paper over our previous work [10],

[11] are as follows. We explain how network management
applications can be programmed using the RINA API provided
by ProtoRINA, and as an example, we illustrate how to
program routing policies. We also run experiments over GENI
resources across multiple aggregates (sites) connected with
wide-area links. Experimental results show that, by setting
appropriate routing policies, ProtoRINA can be used to achieve
better performance for a video streaming application.

The rest of the paper is organized as follows. Our RINA
architecture and ProtoRINA are briefly explained in Section II.
Section III describes how routing policies can be programmed
using ProtoRINA as an example of programming management
applications. Experiments over the GENI testbed are presented
in Section IV. Section V describes our experiences and lessons
learned from using GENI. Section VI concludes the paper with
future work.

II. RECURSIVE INTERNETWORK ARCHITECTURE

A. Recursive Architecture

The Recursive InterNetwork Architecture (RINA) [3], [4] is
a new network architecture based on the fundamental principle
that networking is Inter-Process Communication (IPC) and
only IPC. It is designed based on two main principles: (1)
divide and conquer (recursion), and (2) separation of mecha-
nisms and policies.

(N-1)-level DIF (N-1)-level DIF

IPC2
(sender /relay/

receiver)

IPC1
(sender/
receiver)

IPC3
(sender/
receiver)

App1 App2

N-level DIF (Shared State)

DAF (Shared State)

Fig. 1. RINA overview

As shown in Figure 1, a set of distributed application
processes that cooperate to perform a certain function, such
as communication service or weather forecast, is called a
Distributed Application Facility (DAF). A Distributed IPC
Facility (DIF) is a specialization of a DAF that provides com-
munication service. A DIF is a collection of distributed IPC978-1-4799-6204-4/14$31.00 c©2014 IEEE

processes with shared state, and it provides communication
service over a certain scope (i.e., range of operation in terms of
scale and performance characteristics). Recursively, a higher-
level DIF providing communication service over a larger scope
is formed based on lower-level DIFs that provide smaller-
scope communication services.

For two application processes to communicate, they have to
connect through a common underlying DIF of IPC processes.
If there is no such common DIF, then one must be dynamically
formed. In the latter case, a directory service resolves the
destination application name to an IPC process inside a DIF
through which the destination application can be reached.
The source IPC process then joins the DIF through that IPC
member following an enrollment procedure [10]. Once the
source IPC process is enrolled, it is assigned an internal
private address and initialized with all configurations that are
needed for operations inside the DIF, culminating in a transport
flow between the higher-level application processes. Addresses
inside a DIF are not exposed to the application processes, and
there are no well-known communication ports.

RINA separates mechanisms and policies, and IPC pro-
cesses use the same mechanisms but may use different policies
in different DIFs. For example, different DIFs can have their
own routing policies or authentication policies. RINA simpli-
fies the network protocol stack by using only two protocols:
the Error and Flow control Protocol (EFCP) is used for data
transfer, and the Common Distributed Application Protocol
(CDAP) is used by management or user applications.

B. ProtoRINA

ProtoRINA [6], [7], [8] is Boston University’s user-space
prototype of RINA. ProtoRINA enables the programming of
recursive-networking policies. It can be used by researchers as
an experimental tool to develop (non-IP) user and management
applications, and also by educators as a teaching tool for
networking and distributed systems courses. The current ver-
sion implements the basic recursive structure and management
architecture of RINA, but it is not a complete implementation,
specifically the EFCP protocol is not fully implemented and
we keep modifying and adding new elements.

Application Process

…

IPC Process (N Level)

IPC Process (N-1 Level)

Virtual Link (Wire) Manager

IPC
API

DAF

N Level
DIF

N-1 Level
DIF

Shim Layer

IPC
API

IPC Process (0 Level)

IPC
API

0 Level
DIF

IPC
API

Fig. 2. RINA node

1) RINA Node: As shown in Figure 2, a RINA node is a host
(or machine) where application processes and IPC processes
reside. Application processes or high-level IPC processes
communicate with their peers using the communication service
provided by low-level IPC processes that act as points of
attachment. In the current implementation, physical connec-
tivities between IPC processes in level-0 DIFs are emulated
by TCP connections via a shim layer.

Each RINA node has a configuration file that includes the
information of all processes residing on it, and each process
also has its own configuration file. When a RINA node is
started, all processes on the node are bootstrapped based on
their own configuration files.

2) IPC Process: The components of an IPC process and
how they interact with each other through RINA APIs are
shown in Figure 3. Each IPC process has a Resource In-
formation Base (RIB) that stores its view of all information
related to the operations inside the DIF. The RIB Daemon
helps other components access information stored in the local
RIB through the RIB API or in a remote IPC’s RIB through
CDAP messages. The IPC Resource Manager (IRM) manages
the use of underlying low-level DIFs to allocate and maintain
the connections between the IPC process and its peers.

RIB
Daemon

RIB

IPC Resource
Manager (IRM)

Management
Application Entity

Routing
Daemon

Flow
Allocator

RIB
Daemon

API

IRM
API

IPC
API

IPC Process

IPC
API

Error and Flow
Control Protocol

(EFCP)

Relay and
Multiplexing

(RMT)

Data Transfer
Application Entity

RIB
Daemon

API

RIB
API

RIB
Daemon

API

IRM
API

IRM
API

Fig. 3. RINA IPC process components and APIs

3) RINA APIs: The RIB Daemon API and IRM API (shown
in Table I) are provided to users to write their own applications
or define new network management policies.

RIB Daemon API
public int createEvent(SubscriptionEvent subscriptionEvent);
public void deleteEvent(int subscriptionID);
public Object readSub(int subID);
public void writePub(int pubID, byte[] obj);
IRM API
public int allocateFlow(Flow flow);
public void deallocateFlow(int handleID);
public void send(int handleID, byte[] msg) throws Exception;
public byte[] receive(int handleID);

TABLE I
RIB Daemon API and IRM API provided by ProtoRINA

The RIB Daemon API is based on a publish/subscribe
model, but it also supports the traditional pulling mechanism
to retrieve information. It supports the creation and deletion
of a subscription event (a Pub or Sub event), the retrieval
of information through a Sub event, and the publication of
information through a Pub event. An event ID is returned when
a new event is created. Attributes used in the subscription
event object include: event type (Pub or Sub), subscription
ID, subscriber member list, update period, list of attributes
and their values. The IRM API allows allocating/deallocating
a connection (flow), and sending/receiving messages over
existing connections. Once a new connection is created, a
handle ID is returned, which can be used to send and receive
messages. The flow object contains the attributes of a connec-
tion, which include source/destination application name and
quality-of-service.

More details about the IPC process, its components and
RINA APIs, can be found in [7].

III. PROGRAMMING ROUTING POLICIES

In this section, as an example of programming manage-
ment applications, we describe how routing policies can be
programmed using ProtoRINA and how policy-based routing
can be achieved, where routing configurations can be easily
expressed in terms of high-level policies.

A. Routing Mechanisms

The Routing Daemon (shown in Figure 3) is the component
that is responsible for routing inside the DIF. The routing
policies of an IPC process can be specified in its configuration
file, or be initialized by existing members inside the DIF
after the IPC process is enrolled into the DIF. Particularly,
IPC processes use the same mechanisms provided by the
Routing Daemon, but they may have different routing policies
in different DIFs. All IPC processes inside the same DIF have
to follow the same routing policies (for example, either link-
state or distance-vector routing) in order to collaborate and
perform the routing functionality for the DIF.

In ProtoRINA routing policies can be easily configured
using the configuration file. As an example, in Table II we
show the routing policies specified in the configuration file of
an IPC process. In this example, the IPC process uses distance-
vector routing. Distance-vector information is collected from
its neighbors every 5 seconds. Neighbor connectivities are
checked every two seconds. The path cost is calculated using
hop count.

r i n a . r o u t i n g . p r o t o c o l = d i s t a n c e V e c t o r
r i n a . d i s t a n c e V e c t o r U p d a t e P e r i o d = 5
r i n a . c h e c k N e i g h b o r P e r i o d = 2
r i n a . l i n k C o s t . p o l i c y = hop

TABLE II
Routing policies specified in the IPC process’ configuration file

The Routing Daemon collects routing information (includ-
ing neighbor connectivity, link cost, link state or distance

vector) through Pub/Sub events using the RIB Daemon API
(shown in Table I) provided by the RIB Daemon.

S u b s c r i p t i o n E v e n t e v e n t 1 = new S u b s c r i p t i o n E v e n t (
EventType . SUB, p e r i o d 1 , ” c h e c k N e i g h b o r A l i v e ” , n e i g h b o r) ;

i n t even t ID1 = ribDaemon . c r e a t e E v e n t (e v e n t 1) ;

S u b s c r i p t i o n E v e n t e v e n t 2 = new S u b s c r i p t i o n E v e n t (
EventType . SUB, p e r i o d 2 , ” d i s t a n c e V e c t o r ” , n e i g h b o r) ;

i n t even t ID2 = ribDaemon . c r e a t e E v e n t (e v e n t 2) ;

TABLE III
An example that shows creation of two sub events using RIB Daemon API

As an example, we show how distance-vector routing is sup-
ported through Pub/Sub events. For a DIF that uses distance-
vector routing, after an IPC process joins the DIF, for all its
direct neighbors, the Routing Daemon creates two Sub events
shown in Table III: (1) the checkNeighborAlive event allows
the Routing Daemon to collect direct neighbors’ connectivity
status (up/down) and also measure link cost; and (2) the
distanceVector event provides the Routing Daemon with the
distance vector from each of its neighbors. Through these
two events, the Routing Daemon collects the distance vector
information, and then builds the forwarding table using the
Bellman−Ford algorithm (along with split horizon and poison
reverse techniques to prevent routing loops and the counting-
to-infinity problem).

B. Routing Policies

1) Routing Computation Policy: Two classical routing com-
putation policies are supported: link-state and distance-vector.
Also ProtoRINA allows users to set different update fre-
quencies (as shown in the example in Table II) for different
Pub/Sub events that are used to collect routing information.
For a more static network, routing information can be collected
less frequently, while for a more dynamic network, a higher
frequency is needed.

2) Link Cost Policy: ProtoRINA currently supports two
link-cost policies. Path cost can be calculated using hop cost,
or using jitter (packet delay variation). In our implementation,
delay jitter of each link is computed as described in [12], and
the path cost is the sum of jitter on each link along that path.

3) DIF Formation Policy: ProtoRINA also allows users to
define the network topology. For the same physical topology,
users can either build a single-level DIF or multi-level DIFs,
and the number of IPC processes in each DIF can also be
configured. For example, a two-level DIF topology can apply
to a situation where each level-0 DIF (i.e. a lowest-level
DIF over a small scope) is a local network (where jitter
may be small enough to be ignored), but a level-1 DIF (i.e.
a higher-level DIF over a larger scope) spans a wide-area
network (where jitter on the wide-area links connecting the
local networks may be more significant and affect application
performance).

In our previous work [11], we show that DIF formation
can be configured to achieve less routing overhead and faster
convergence time in the face of link failures. In this paper, we
configure a two-level DIF topology and set the link-cost policy

to “jitter” so as to route video traffic over the least-jitter path
and improve video performance. Issues related to the mapping
of application requirements to management policies (for DIF
formation, routing, etc.) are left for future work.

C. Programming New Policies

ProtoRINA provides routing policy holders for users to
define their own routing policies using the RIB Daemon API
(Table I), which helps collect routing information inside the
DIF. In the current version, we support two routing policy
holders. The routing computation policy holder allows the
creation of new routing computation policies (other than link-
state or distance-vector, e.g. path-vector), and the link cost
policy holder allows the creation of new link-cost policies
(other than hop or jitter, e.g. delay). Once new routing policies
are added, users can simply apply new policies by specifying
them in the configuration file.

What’s more, using the RINA APIs (RIB Daemon API
and IRM API), users can easily add other RINA policies
(such as authentication policy, addressing policy, and resource
allocation policy), and develop their own user or management
applications without implementing mechanisms from scratch.

IV. VIDEO STREAMING OVER PROTORINA
In this section, we present our experiments on the GENI

testbed. As an example of application-specific policies, we
demonstrate how an appropriate link-cost policy can be used
to achieve better performance for video streaming applications.

A. GENI Testbed

GENI (Global Environment for Network Innovations) [9]
is a nationwide suite of infrastructure that enables research
and education in networking and distributed systems. GENI
supports large-scale experimentation with advanced protocols
for data-centers, clouds, mobile and SDN networks, etc. And
it supports experimentation with future network architectures,
such as RINA, for possible deployment. Users (researchers and
educators) can obtain computing resources, such as virtual ma-
chines (VMs) and raw PCs, from different physical locations
(GENI aggregates) that are layer-2 connected, and they can
connect these computing resources via layer-2 links (stitched
VLANs) or layer-3 links (Generic Routing Encapsulation
tunnels).

Fig. 4. GENI topology shown in Flack, a GUI tool of the GENI Portal

Users can reserve and manage GENI resources through the
GENI Portal [13]. The GENI Portal allows users to login
using their home institution’s credentials, and after logging in,
users can reserve GENI resources using tools such as Flack
and Omni, and monitor resources using tools such as GENI
Desktop and LabWiki. Figure 4 shows an example of a GENI
topology displayed in Flack.

We have used a number of these GENI tools, including
GENI Portal, Flack, Omni (Stitcher), and GENI Desktop.
Details of our experiences with the GENI testbed are presented
in Section V.

B. Video Streaming on Legacy Hosts

Video Client Proxy

VLC Client 1

VLC Client 2

VLC Client N

Video Server Proxy

Live555
Streaming Server

RINA Network

Internet connection

Fig. 5. Video clients (VLC players) are connected to the video streaming
server (Live555 streaming server) through RINA proxies over a RINA network

In order to support a video streaming application running on
legacy hosts, two video proxies are used as shown in Figure 5.
The video client proxy is connected to the video clients
over the Internet, and the video server proxy is connected to
the video streaming server also over the Internet. These two
proxies are connected over a RINA network that is composed
of DIFs, where routing policies (and other policies) can be
easily configured for each DIF. Video proxies support the
Real-Time Streaming Protocol (RTSP) and redirect all traffic
between the video clients and the video streaming server to
the communication service provided by the RINA network.
The details of these two proxies can be found in [14].

In our video streaming experiments, we use the VLC player
(version 2.0.4) [15] as the video client, and the Live555 server
(version 0.78) [16] as the video streaming server. The video
file used in our experiment is encoded in the H.264/MPEG-4
AVC (Part 10) format, and can be found at [17].

C. Experimental Design

As shown in Figure 6, we reserve GENI resources (VMs,
VLANs, and GRE tunnels) from four GENI aggregates (Geor-
gia Tech, UIUC, NYU, and Cornell University). VMs in
different aggregates are connected using GRE tunnels, and
VMs in the same aggregate are connected using VLANs. Each
RINA node (Section II-B1) is running on a GENI VM, and we
use 13 RINA nodes (Node 1 to Node 13). Node 1, Node
2, and Node 3 are running on VMs from the NYU aggregate.
Node 4, Node 5, Node 6, and Node 7 are running on
VMs from the Georgia Tech aggregate. Node 8, Node 9,

and Node 10 are running on VMs from the UIUC aggregate.
Node 11, Node 12, and Node 13 are running on VMs
from the Cornell aggregate.

Node 8

Node 9

Node 10

Node 1

Node 2

Node 3

Node 5

Node 6 Node 4

Node 7

Node 11 Node 13

Node 12

GRE
Tunnel

GRE
Tunnel

GRE
Tunnel

GRE
Tunnel

UIUC Aggregate

Georgia Tech Aggregate

Cornell Aggregate

NYU Aggregate

Fig. 6. Each RINA node is running on a GENI VM. RINA nodes in different
aggregates are connected via GRE tunnels, and RINA nodes in the same
aggregate are connected via VLANs

1) DIF Formation Policy: To provide communication ser-
vice for the video client proxy located at Node 9 and the
video server proxy located at Node 2, different DIF forma-
tion policies can be used to generate different DIF topologies.
In our experiment, we only use the DIF formation policy
shown in Figure 7, and focus on different link-cost policies.

IPC 9
(Node 8)

IPC 10
(Node 9)

IPC 11
(Node 10)

IPC 2
(Node 2)

IPC 3
(Node 3)

IPC 5
(Node 5)

IPC 6
(Node 6)

IPC 4
(Node 4)

IPC 7
(Node 7)

DIF 4

IPC 14
(Node 11)

IPC 15
(Node 13)

IPC 13
(Node 12)

Video Client
Proxy

(Node 9)

Video Server
Proxy

(Node 2)

IPC 8
(Node 8)

IPC 12
(Node 10)

IPC 16
(Node 3)

IPC 1
(Node 1)

IPC 17
(Node 9) IPC 18

(Node 10)

IPC 19
(Node 3)

IPC 20
(Node 2)

IPC 21
(Node 8)

DIF 1

DIF 3

DIF 2

Fig. 7. Video client proxy (on Node 9) and video server proxy (on Node
2) communicate through a level-1 DIF (DIF4), which is built on top of three
level-0 DIFs (DIF1, DIF 2, and DIF 3)

As shown in Figure 7, there are three level-0 DIFs (DIF 1,
DIF 2, and DIF 3), and one level-1 DIF (DIF 4). DIF 1
has three members: IPC 9 (on Node 8), IPC 10 (on Node
9), and IPC 11 (on Node 10). DIF 2 has five members:
IPC 12 (on Node 10), IPC 13 (on Node 12) , IPC 14
(on Node 11), IPC 15 (on Node 13), and IPC 16 (on
Node 3). DIF 3 has eight members: IPC 1 (on Node 1),
IPC 2 (on Node 2) , IPC 3 (on Node 3), IPC 4 (on

Node 4), IPC 5 (on Node 5) , IPC 6 (on Node 6), IPC
7 (on Node 7), and IPC 8 (on Node 8). DIF 4 has five
members: IPC 17 (on Node 9), IPC 18 (on Node 10),
IPC 19 (on Node 3) , IPC 20 (on Node 2), and IPC
21 (on Node 8). Processes hosted on the same RINA node
are depicted in the same color in Figure 7.

Application processes (or IPC processes) talk to their peers
using underlying IPC processes of lower-level DIFs on the
same RINA node. In Figure 7, the video client proxy on Node
9 uses IPC 17, which recursively uses IPC 10. The video
server proxy on Node 2 uses IPC 20, which recursively
uses IPC 2. IPC 21 on Node 8 uses IPC 8 and IPC 9,
IPC 18 on Node 10 uses IPC 11 and IPC 12, and IPC
19 on Node 3 uses IPC 3 and IPC 16.

So the video client proxy and video server proxy com-
municate through a connection supported by the underlying
DIF 4, which recursively uses the communication services
provided by three level-0 DIFs. The connection between the
video server proxy (using IPC 20) and the video client proxy
(using IPC 17) is mapped to a path inside DIF 4, and each
link in DIF 4 is supported by a level-0 DIF.

2) Link Cost Policy: As mentioned earlier, RINA separates
mechanisms and policies. Different DIFs (at different levels)
use the same mechanisms but can use different policies. In
our experiment, the three level-0 DIFs use hop as the link-
cost policy. For the higher-level DIF, DIF 4, which directly
provides communication service between the two video prox-
ies, we test two link-cost policies: hop and jitter, and observe
how they affect the performance of the video application.

3) Other Policies: All four DIFs use the link-state routing
computation policy with the same frequency for collecting
link-state information from neighbors (every two seconds).

Finally, we use the network emulation tool, NetEm [18],
to emulate link delay and jitter. Delay (300ms) with variation
(±200ms) is emulated on two physical links between RINA
nodes (Node 1-Node 2, and Node 8-Node 9). This em-
ulation leads to jitter on link IPC 9-IPC 10 in DIF 1, and
on link IPC 1-IPC 2 in DIF 3. This in turn is reflected
as link jitter in the higher-level DIF 4, where four links
(IPC 17-IPC 21, IPC 18-IPC 21, IPC 20-IPC 21,
and IPC 19-IPC 21) exhibit jitter that they inherit from
underlying paths.

D. Experimental Results

As we can see from Figure 7, the connection between
the video server proxy and video client proxy can be routed
via one of the seven possible loop-free paths inside DIF 4
between IPC 20 and IPC 17. These paths are: path 1 (IPC
20-IPC 21-IPC 17), path 2 (IPC 20-IPC 19-IPC
18-IPC 17), path 3 (IPC 20-IPC 21-IPC 19-IPC
18-IPC 17), path 4 (IPC 20-IPC 21-IPC 18-IPC
17), path 5 (IPC 20-IPC 19-IPC 21-IPC 17), path 6
(IPC 20-IPC 19-IPC 21-IPC 18-IPC 17), and path
7 (IPC 20-IPC 19-IPC 18-IPC 21-IPC 17).

Figure 8 shows the path jitter of path 1 (least-hop path) and
path 2 (least-jitter path), where the jitter of a path is calculated

as the sum of jitter on all links along that path (collected by
the routing task of IPC 20). If jitter is used as link cost,
the connection between IPC 20 and IPC 17 is routed on
path 2. On the other hand, if hop is used as link cost, the
connection is routed on path 1.

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

Time (sec)

J
it
te

r
C

o
s
t

(m
s
)

Path1:IPC20−IPC21−IPC17

Path2:IPC20−IPC19−IPC18−IPC17

Fig. 8. Path jitter of path 1 (the least-hop path) is larger than path 2 (the
least-jitter path), where path jitter is calculated as the sum of jitter on links
along the path (collected by the routing task of IPC 20)

For video applications, it is important to choose a path with
least jitter, otherwise video quality degradation is observed.
Figure 9 shows the measured instantaneous jitter that is
experienced by RTP packets from the video server proxy to
the client proxy, as the video server streams the same video to
a player client. To calculate the jitter, we sample RTP packets
received by the client proxy at the rate of one every 60 packets.
We can see that under least-jitter routing, the RTP packets
experience much less jitter compared to least-hop routing.

As a consequence of this increased jitter, we indeed observe
that the video freezes more often when using hop rather than
jitter as the link-cost policy. Measuring video quality at the
client side (player) using metrics such as signal-to-noise ratio
(SNR) and mean opinion score (MOS), is left for future work.

5 10 15 20 25 30 35 40 45 50 55
0

100

200

300

400

500

600

700

800

Time (sec)

J
it
te

r
(m

s
)

Policy 1: least−hop path

Policy 2: least−jitter path

Fig. 9. Measured instantaneous jitter for RTP packets from the video server
proxy to the client proxy when DIF 4 uses hop or jitter as link cost

It is important to choose appropriate network management
policies to achieve better user application performance. As
future work, we plan to investigate how to map specific

application requirements to appropriate network policies, i.e.,
how to choose and compose policies for DIFs over different
scopes at different levels.

V. GENI EXPERIENCES AND LESSONS LEARNED

We have been running experiments on GENI for the past
two years, which has been instrumental to our efforts toward
testing and improving our RINA architecture. GENI has
evolved considerably over time, and new tools are frequently
being added and updated. In this section, we present our
experiences with GENI — these experiences are not limited
to experiments in this paper.

A. Experiments Across Aggregates
Our experiments involve resources from a single aggregate

and from multiple aggregates at different locations. There are
two ways to connect resources across different aggregates:
GRE tunnels and stitched VLANs. GRE tunnels provide layer-
3 connectivity using IP-in-IP encapsulation, while stitched
VLANs provide layer-2 VLAN connectivity between different
aggregates.

GRE tunneling is easier to use as (1) it can be easily created
through Flack, a GUI tool for resource reservation, and (2)
it is more likely to succeed when reserving resources. On
the other hand, stitched VLAN connectivity is a bit more
complicated. It is not supported in Flack and we have to
use Omni, a command-line tool, along with the rspec file
(a configuration file describing the resource request). Also
reserving a stitched VLAN is more likely to fail, especially
when involving more than two aggregates, due to GENI’s
limitation in finding and pairing available VLAN tags across
multiple aggregates. Furthermore, there are fewer aggregates
that support stitched VLANs. The recently released version of
Omni (v2.6) has improved the success rate of establishing a
stitched VLAN, however it would still be convenient if Flack
can support stitched VLAN reservation.

GRE tunnels have some drawbacks. Since GRE tunnels
use IP-in-IP encapsulation, they introduce extra overhead
that may not be desirable for some experiments. Also for
overlay experiments running over TCP, the extra header due
to the encapsulation may cause IP fragmentation that leads to
TCP performance degradation. In our experiments, we have
manually configured the Maximum Transmission Unit (MTU)
size from the default 1500 bytes to 1400 (or less) bytes for
Network Interface Cards (NICs) on both ends of the GRE
tunnel in order to avoid IP fragmentation and hence improve
TCP performance.

When creating GRE tunnels and stitched VLANs, we can
specify parameters such as capacity, packet loss, and latency,
however these settings are not fully supported and we had to
use emulation tools such as NetEm [18] in our experiments.
It would be helpful if GENI can support the parametrization
of GRE and VLAN connections.

B. Time Needed For Resource Reservation
As we run complicated experiments that involve more GENI

resources, we found that it may take a lot of time (tens of

minutes) to successfully reserve resources. Flack can become
very slow when building complicated GENI topologies. And
sometimes we have to try different aggregates in order to find
available resources, but recently, the online webpage [19],
which provides status of resources at different aggregates,
proved to be very helpful when reserving resources.

C. GENI Desktop
The GENI Desktop is a tool that can help visualize real-

time measurements of GENI resources, which is useful when
running experiments. The GENI Desktop provides built-in
graphs for basic measurements, such as throughput, CPU
usage, memory usage, IP/TCP/UDP traffic, etc. It also enables
generating user-defined graphs, and provides interfaces that en-
able operations such as sending commands, uploading files and
SSH to remote GENI resources. But the GENI Desktop has
some limitations: (1) it does not support generating multiple
data sets on the same graph, for example we cannot generate
figures such as Figure 8; (2) users cannot fully control the
appearance (font, scale, legend, axis label, etc.) of graphs; (3)
there are lags (minutes) when generating real-time user-defined
graphs; and (4) some functionalities (e.g., uploading files and
SSH to VMs) are not stable and sometimes do not work.

VI. CONCLUSION AND FUTURE WORK

In this paper, as an example of programming network
management applications, we presented how routing policies
can be programmed using the RINA API provided by Proto-
RINA. Through experiments running on the GENI testbed, we
demonstrated how better video application performance can
be achieved by choosing appropriate routing policies. We also
reported on our experiences with running GENI experiments
over the past two years. We believe these experiences are
helpful to both GENI experimenters and GENI developers.

As future work, we plan to investigate how to choose and
compose network policies over different scopes to achieve
better performance for different user applications. Also we
plan to make a RINA network available to offer or ac-
cess application services by having our ProtoRINA run on
a long-lived slice (virtual network) over the GENI testbed.
Researchers and educators can then opt-in and benefit from the
RINA architecture through programming recursive-networking
policies (not limited to routing policies), leveraging the com-
mon mechanisms provided by ProtoRINA. With this long-lived
slice, users can offer new application services that can be
hosted either on the RINA network running on GENI, or on

their local network (such as a data center). To access services
hosted on an outside local network, the RINA network can
be extended through shim layers to connect to the service
provider’s local network, in addition to the customer’s local
network if the customer is not part of the RINA network. We
also plan to run larger-scale experiments that can stress-test
both our RINA architecture and the GENI resources.

ACKNOWLEDGMENT

We would like to thank the National Science Foundation
(NSF grant CNS-0963974) and the GENI Project Office.
And thanks to Yue Zhu for his implementation of the video
streaming application proxies.

REFERENCES

[1] Open Networking Foundation White Paper, “Software-Defined Network-
ing: The New Norm for Networks,” April, 2012.

[2] Y. Wang and I. Matta, “SDN Management Layer: Design Requirements
and Future Direction,” in Workshop on COntrol, Operation, and appLi-
cation in SDN Protocols (CoolSDN 2014), co-located with ICNP 2014,
Raleigh, NC, USA, October 2014.

[3] J. Day, I. Matta, and K. Mattar, “Networking is IPC: A Guiding Principle
to a Better Internet,” in Proceedings of ReArch’08 - Re-Architecting the
Internet (co-located with CoNEXT), New York, NY, USA, 2008.

[4] Boston University RINA Lab, http://csr.bu.edu/rina/.
[5] Y. Wang, F. Esposito, I. Matta, and J. Day, “RINA: An Architecture

for Policy-Based Dynamic Service Management,” in Technical Report
BUCS-TR-2013-014, Boston University, 2013.

[6] Y. Wang, I. Matta, F. Esposito, and J. Day, “Introducing ProtoRINA:
A Prototype for Programming Recursive-Networking Policies,” ACM
SIGCOMM Computer Communication Review (CCR), July 2014.

[7] Y. Wang, F. Esposito, I. Matta, and J. Day, “Recursive InterNetworking
Architecture (RINA) Boston University Prototype Programming Man-
ual,” in Technical Report BUCS-TR-2013-013, Boston University, 2013.

[8] ProtoRINA, http://csr.bu.edu/rina/protorina/.
[9] GENI, http://www.geni.net/.

[10] Y. Wang, F. Esposito, and I. Matta, “Demonstrating RINA Using the
GENI Testbed,” in Proceedings of the Second GENI Research and
Educational Experiment Workshop (GREE2013), Salt Lake City, UT,
USA, March 2013.

[11] Y. Wang, I. Matta, and N. Akhtar, “Experimenting with Routing Policies
using ProtoRINA over GENI,” in Proceedings of the Third GENI
Research and Educational Experiment Workshop (GREE2014), Atlanta,
GA, USA, March 2014.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” RFC 3550, July, 2003.

[13] GENI Portal, https://portal.geni.net/.
[14] Y. Zhu, “RINA Video Streaming Application Proxies,” http://csr.bu.edu/

rina/YueZhu Video.
[15] VLC Media Player, http://www.videolan.org/.
[16] LIVE555 Media Server, http://www.live555.com/.
[17] http://csr.bu.edu/rina/videoSample/.
[18] NetEm. Linux Foundation, http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem.
[19] InstaGENI Rack Status, http://groups.geni.net/geni/wiki/ExpGraphs.

