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Abstract—Computer networks are becoming increasingly com-
plex and difficult to manage. The research community has
been expending a lot of efforts to come up with a general
management paradigm that is able to hide the details of the
physical infrastructure and enable flexible network management.
Software Defined Networking (SDN) is such a paradigm that
simplifies network management and enables network innovations.

In this survey paper, by reviewing existing SDN management
layers (platforms), we identify the general common management
architecture for SDN networks, and further identify the design
requirements of the management layer that is at the core of the
architecture. We also point out open issues and weaknesses of
existing SDN management layers. We conclude with a promising
future direction for improving the SDN management layer.

I. INTRODUCTION

Traditional networks are managed through low-level and
vendor-specific configurations of individual network compo-
nents, which is a very complicated and error-prone process.
And nowadays computer networks are becoming increasingly
complex and difficult to manage. This increases the need for
a general management paradigm that provides common man-
agement abstractions, hides the details of the physical infras-
tructure, and enables flexible network management. Making
the network programmable (pioneered by earlier research in
Active Networking [26]) leads to such a general paradigm, as
programmability simplifies network management and enables
network innovations.

Software Defined Networking (SDN) has been proposed
to enable programmable networks. In SDN, the network is
considered to have two components: (1) control plane which
determines how to handle and forward data traffic, and (2)
data plane which handles and forwards data traffic toward its
destination. SDN separates the control plane and data plane,
and focuses on programming the control plane through a
network management layer1. Through a high-level interface
provided by the network management layer, network managers
can easily manage the network without dealing with the
complexity of low-level network details.

In general, the data plane might not only be a forwarding
plane that just stores and forwards packets (or discards them)
through packet flow (forwarding) table manipulations, but it
might also include more application-specific data processing
capabilities [1][8]. This is similar to the focus of earlier re-
search in Active Networking, where network devices (switches

1We use the terms “management platform”, “management layer” and
“control platform” interchangeably.

or routers) are expected to perform computation on and
modification of packet contents [26]. In this paper we focus
on the control plane only for the purpose of programming the
forwarding of packet flows, i.e. the network management layer
for SDN networks.

The main contribution of this paper is to identify the
general common management architecture for SDN networks,
and further identify the design requirements of the network
management layer that is at the core of the architecture.
The rest of the paper is organized as follows. We present
the common management architecture for SDN networks in
Section II. Design requirements of the SDN management layer,
along with open issues and weaknesses of existing manage-
ment layers, are described in Section III. Section IV briefly
describes our approach that, we believe, offers a promising
future direction for improving the SDN management layer.
Section V concludes the paper with future work.

II. MANAGEMENT ARCHITECTURE FOR SDN NETWORKS

The core of a management architecture for SDN networks
is the management layer as shown in Figure 1. A management
layer should enable the monitoring and control of the network.
The management layer itself does not manage the network but
provides a programmatic interface to management (or user)
applications, which in turn manage the network. Examples
of management applications include access control, virtual-
machine (VM) migration, traffic-aware path selection and path
adaptation, and redirecting or dropping suspected attack traffic.

A. Management Architecture Overview

Figure 1 shows a general network management architecture
for SDN networks. At the bottom are the network devices
including switches or routers2. There is a process (switch
process) running on each network device, and this process
hides the internal details of the physical device but exposes
a Network Device Interface (the so-called “Southbound API”
[22]). The Network Device Interface provides a standardized
way to access the switch processes which operate on the
switches. The switch process is responsible for low-level op-
erations on switches such as adding/removing packet flow en-
tries, and configuration of ports and queues. The Management
Layer consists of one or more controller processes, which may
run on one or more physical servers. Controller processes

2In this paper, switches and routers are considered to be the same, and both
provide Layer 2 and Layer 3 operations.978-1-4799-6204-4/14$31.00 c©2014 IEEE



collaborate to provide the network monitoring and control
functionalities. The Management Layer exposes a Network
Management Interface (the so-called “Northbound API” [22])
for management (or user) application processes to manage the
network.

Mgmt App
Process

Process

Switch
Process

Switch

Process

Switch

Process

Switch

Network Device Interface

Controller
Process

Controller
Process

Controller
Process

Mgmt App
Process

...

Management Layer 

User App
Process

Network Management Interface

Fig. 1. A general network management architecture for SDN networks.

B. OpenFlow-based SDN networks

In an SDN network, the Network Device Interface can
be supported by any mechanism (protocol) that provides
communication between the control plane (management layer)
and data plane (switch processes). OpenFlow [20] is such a
mechanism (protocol) that gives the management layer access
to switches and routers. OpenFlow is the first standardized
open protocol that allows network administrators or exper-
imenters to adapt the configuration of switches and routers
from different vendors in a uniform way so as to add and
remove packet flow state (forwarding) entries.

As OpenFlow can be easily deployed on existing hardware,
OpenFlow soon became popular in the research community
and industry. OpenFlow enables programming of the hardware
without needing vendors to expose the internal details of their
devices. OpenFlow is now supported by major vendors, and
OpenFlow-enabled switches are commercially available.

OpenFlow is now the most commonly deployed SDN
technology and is seen as an enabler of SDN. However,
OpenFlow is not the only mechanism to enable SDN and
support the Network Device Interface, and any mechanism
that could provide communication between the control plane
and data plane can be used. Forwarding and Control Element
Separation (ForCES) [37] protocol is an example, however it is
not adopted by major switch/router vendors. In this paper, we
focus on OpenFlow-based SDN networks, which have recently
attracted a lot of attention in the network management area due
to the growing popularity of OpenFlow.

C. Administrator-level Interface and User-level Interface

There are two types of interface that can be provided by
the network management layer: administrator-level interface

and user-level interface. An administrator-level interface is
provided to the network administrator, who uses this interface
to write management applications to monitor and control the
network as a whole. This interface is provided by default by
all management layers.

On the other hand, a user-level interface is provided to
network end-users. End-users write general applications (such
as a video conference application or Hadoop-based applica-
tion) using this interface to affect the management of their
traffic, and as a result, achieve better performance, security or
predictable behavior for their applications [14]. To achieve the
same goal in an SDN network in the absence of a user-level
interface, end-users may either (1) have to out-of-band request
service from the network administrator, which is inconvenient
and increases the workload on the network administrator, or
(2) use a dedicated per-application management controller that
runs as the administrator, which makes it hard to combine
different application management controllers on the same
physical network since decisions from different management
controllers may conflict with each other.

D. Policy-based Network Management and Scope

By policy-based network management we mean that net-
work management can be expressed in terms of high-level
policies instead of network device configurations, which are
low-level and vendor-specific. The network management layer
is responsible for translating these high-level policies into low-
level and vendor-specific configurations of network devices
(switches or routers). Policies are in the form of a set of rules
that define a set of network conditions, responses to these
network conditions, and network components that perform
these responses [18]. Advantages of policy-based network
management include: simplifying device, network and service
management, enabling the provision of different services to
different users, managing the increasing complexity of pro-
gramming devices, and supporting business-driven network
configurations [25].
Contribution: One of our contributions in this paper is
introducing and defining the concept of scope and scoping
in network management as follows. A network management
layer manages a network over a certain scope that includes
network’s physical components, i.e. devices, and logical
components, i.e. processes. For a distributed management
layer that consists of multiple management controllers, each
management controller is a process that has its management
subscope, which consists of a subset of network components
(devices and processes). Also each policy has its own sub-
scope where the policy may only affect a subset of network
components. A policy is enforced on the network through
one or multiple management controllers. Scoping (or support
for scope) means that a management layer explicitly defines
the subscope induced by a given policy, and dynamically
creates new management subscopes and associated controller
processes to activate such a policy. Scoping enables fine-
grained control over the network and better support for policy-
based management.



III. DESIGN REQUIREMENTS OF MANAGEMENT LAYER

In this section we describe the design requirements of the
management layer for OpenFlow-based SDN networks. We
focus on the requirements that should be supported by the
management layer, and the architectural components needed to
meet these requirements. Implementation details and tradeoffs
are outside the scope of this paper.

A. A Global Network View and General API

A basic requirement of the management layer is to provide a
global network view and offer a general API, which simplifies
the programming of management applications. NOX [16], as
shown in Figure 2, is the first OpenFlow management platform
that met such a requirement. It is a follow-up work to previous
control platforms (SANE [6] / Ethane [5]) that only focused
on security features (access control). The NOX management
layer contains only one controller.
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Fig. 2. NOX is a centralized management layer.

The global view of NOX includes the switch-level topology,
and the location of users, hosts and services. NOX constructs
the network view and bindings between (user, host and service)
names and addresses through packet-flow initiations and built-
in base applications that use DNS, DHCP and LLDP. The
view does not include the current state of network traffic,
but applications can query the status of switches through
OpenFlow messages.

register handler < event name, handler >
send openflow< dpid, of message >
install datapath flow < dpid, flowAttr, actions >
delete datapath flow < dpid, flowAttr >

TABLE I
SELECTED NOX API.

A selected subset of NOX API is shown in Table I. The
NOX API enables applications to send OpenFlow messages to
a switch (identified by dpid) or to install/remove flow rules on
it. The NOX API also allows applications to register handlers
for particular events. These events include connection creation
and deletion, user registration and unregistration, link going

up and down, switch join and leave, packet received, switch
statistics received, and other application-specified events.

NOX controls network traffic by sending instructions to
switches through OpenFlow messages, which install flow state
(forwarding) entries in switches. A flow entry in OpenFlow
switches contains a set of header matching fields, packet
counters and corresponding actions. When a packet arrives at
a switch, if the packet matches a flow entry in the switch, the
switch updates the counter and applies corresponding actions.
If the packet does not match any flow entry, the packet is
forwarded to the management layer (NOX controller), and the
controller determines what to do by checking registered event
handlers.

As illustrative examples, we describe next how NOX per-
forms network discovery, and access control and routing: (1)
For network discovery, each switch sends out LLDP messages
through its ports to its neighbors. When LLDP messages are
received by neighbor switches, as these messages do not match
any flow entry, they are forwarded to the NOX controller.
Through monitoring the sending and receiving of these LLDP
messages by switches, NOX figures out the network topology.
(2) For access control, the first packet to the destination from
the sender is forwarded to the NOX controller by the first-
hop switch as it does not have a corresponding flow entry.
When the NOX controller receives this packet, the built-in
access control application (handler) decides whether the flow is
allowed or not. If so, the built-in routing application computes
the Layer-2 route in a centralized way (similar to the Routing
Control Platform in [3]) based on the network topology, and
translates the route to a set of flow entries installed in switches
along the path to the destination; otherwise the packet is
simply discarded.

Writing complicated programs with NOX is difficult since
(1) management applications have to configure each switch
separately, as well as the behavior of the NOX controller itself
when no matching rule is found when a switch receives a
packet, and (2) different flow rules are not easy to compose
as NOX does not support rule operations such as negation
and union. Many management platforms with high-level lan-
guage support have been proposed to simplify management
programming, wherein they translate the programs written in
a high-level language into low-level switch configurations.
These platforms include Flow-based Management Language
(FML) [17], Procera [31], Frentic [15], Pyretic [21], and
Maple [32]. Also, the NOX controller is a single-threaded
process and not optimized for performance, and many multi-
threaded management controllers have been proposed, includ-
ing NOX-MT [30] and Beacon [10].

Open Issues: Even though many high-level languages have
been developed, programming management applications still
has to deal with a lot of low-level details of the network,
such as per-link or per-switch configurations. Also there is
no standard SDN management API — many different man-
agement APIs have been proposed, but they are not extended
from existing ones and there is not much evolution of these
APIs.



B. Distributed Controllers
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Fig. 3. Onix consists of distributed controllers (Onix instances).

NOX is a centralized management layer that has a single
controller. However, for a large-scale network, a centralized
management layer is not enough with respect to scalability and
reliability, so it is necessary to distribute the management layer
to run on distributed controllers. Onix [19], shown in Figure 3,
is a distributed (proprietary) management layer that consists
of multiple Onix instances (controllers). Each Onix instance
connects to and manages a subset of the network devices. Onix
enables flexible network state distribution primitives between
Onix instances and between Onix instances and switches, so
management applications do not have to re-implement the
distribution mechanism. Onix helps address the scalability
issue through multiple Onix instances, and also by enabling
the partitioning and aggregation of the management subscope
of each Onix instance.

Onix maintains a Network Information Base (NIB), which
contains all network entities, including nodes, links, ports,
forwarding tables, and so on. The NIB is replicated and
distributed over Onix instances, and Onix makes sure that
the NIB state is consistent among them. Each network entity
is stored as an object in the NIB. Onix provides a more
general API than NOX: it enables management applications
to access (i.e. create, destroy, inspect, and modify) network
entities through operations on the NIB, and it also supports
notification callbacks on some network state changes. The
operations on the NIB are automatically translated to flow
operations on switches. This is different from NOX as NOX
applications have to specify operations on each switch.

Open Issues: Scoping (Section II-D) is not well supported
in Onix and other SDN distributed management layers such
as HyperFlow [29]. Onix supports the creation of new Onix
instances with new scopes through aggregation or partitioning,
but the new scope is restricted to devices that are physically
close to each other. Scope in Onix is thus flat, i.e. it spans
only one level of processes and a higher-level scope that spans
distant processes is not supported. Furthermore, it is not easy

to define the subscope induced by a given policy.

C. Network Virtualization

Network virtualization provides support for multiple iso-
lated virtual networks to be built on top of the same physical
network. It is an important aspect of the management layer
since (1) it can improve resource utilization of the physical
network by enabling network consolidation, and (2) it can be
used to build (virtual) testbeds that provide a safe and realistic
environment for developing and testing new network features
(protocols and applications) in isolation before running them
on the real network. FlowVisor [24] is a centralized manage-
ment layer that provides network virtualization, thus it enables
building and controlling multiple user-defined virtual networks
on the same physical network. FlowVisor can be seen as a
network hypervisor as shown in Figure 4.

FlowVisor acts as a transparent proxy between user-defined
guest controllers and switches. It enables multiple NOX con-
trollers (or other controllers such as Beacon [10]) to share the
same switches. Each guest controller has full control over its
subscope, or so-called network slice (an instance of virtual
network), where a slice is a subscope (subset) of the scope
managed by FlowVisor. FlowVisor provides transparency and
isolation between slices by inspecting, rewriting and policing
OpenFlow messages that it receives from guest controllers.
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Fig. 4. FlowVisor acts as a network hypervisor to provide network
virtualization.

In FlowVisor, a flowspace assigned to a slice is defined by
a collection of packet header fields including: src/dst MAC
address, VLAN id, Ethernet protocol type, IP protocol, src/dst
IP address, ToS/DSCP and src/dst port number. FlowVisor iso-
lates slices from each other by making sure slices’ flowspaces
do not overlap.

FlowVisor has several drawbacks including: (1) the virtual
topologies are restricted by the physical topology. If two
physical switches, to which two virtual switches map, are not
directly connected in the physical network, then these two
virtual switches cannot be directly connected in the virtual
network; and (2) virtual networks do not have a separate virtual



flowspace. Flowspaces of the physical network are assigned to
different virtual networks, and the same flowspace cannot be
controlled by different slices. To overcome the above draw-
backs, several management layers have been proposed such
as ADVisor (Advanced FlowVisor) [23] and FlowN [9]. Both
ADVisor and FlowN enable the creation of virtual topologies
that are completely decoupled from the underlying physical
network, and guest controllers have completely separate virtual
flowspaces.

Open Issues: The management layers mentioned above can
only provide network virtualization over networks that are
under a single administrative domain. Network virtualization
across multiple administrative domains has recently attracted
more attention, e.g. [11], [27], as this is important in environ-
ments such as a cloud computing marketplace where multiple
cloud providers are present.

D. User-level Interface Support

As we have mentioned in Section II-C, it is important for the
management layer to support a user-level interface that enables
better user application performance. FlowVisor enables users
to place control over the network through network virtualiza-
tion, but each user has to program a separate controller which
introduces more overhead. PANE [14], as shown in Figure 5,
is a centralized management layer, which directly delegates
read and write authority from the network administrator to
end-users by providing a user-level interface.

PANE is developed based on the concept of participatory
networks. PANE enables multiple user applications to place
controls over the network (including reserving resources,
providing hints about future traffic, and querying network
state). PANE uses a Network Information Base (NIB) to store
network elements and their states (including hosts, switches,
ports, queues, links, and their capacity such as rate-limiter or
per-port output queues in a switch).

Share : S ∈ {P} × {F} × {Priv}
Principal : P = (user, host, app)
Flow : F =< srcIP, dstIP, proto, srcPort, dstPort>
Privilege : Priv = CanDeny t secs | CanAllow t secs

| CanReserve n Mbps | CanRatelimit n Mbps
| CanWayPoint {IP} | CanAvoid {IP}

Request: Req = Deny t secs | Allow t secs
| Reserve n Mbps | Ratelimit n Mbps
| WayPoint {IP} | Avoid {IP}

TABLE II
SOME OF THE CONCEPTS IN THE PANE API.

Some of the concepts in the PANE API are shown in
Table II. In PANE, a principal is a triple consisting of an
application running on a host by a user. A flow is identified
by source/destination IP address, port number and transport
protocol type. A share determines privileges that principals
have on certain flows. Such privileges include allowing/deny-
ing traffic for t seconds, reserving/rate-limiting bandwidth up
to n Mbps, and directing traffic through or around particular
IP addresses. PANE maintains a share tree that stores the

privileges of principals, and shares in the share tree are added
(or removed) by the network administrator. Principals manage
flows over a certain time period by sending Requests to PANE.
PANE in turn decides whether such requests can be realized
in the network based on the share tree.
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Fig. 5. PANE provides user-level API to end-users.

Open Issues: PANE allows users to reserve bandwidth,
however other aspects of QoS support (including loss rate
and delay guarantees) are not supported. A management layer
should provide users with an API that offers predictable
network connections as this is crucial for user application
performance. However, since existing SDN systems are tied to
the TCP/IP architecture, the rudimentary “best-effort” delivery
service of TCP/IP makes it hard for the SDN management
layer to support QoS requirements. Other requirements, such
as mobility and security, are also made challenging due to
limitations inherent in the TCP/IP architecture [7], [2].

E. Network Orchestration

The management layer may receive requests from differ-
ent management (or user) applications. These requests may
conflict with each other (for example, one request may deny
all traffic to port 80, and another one may allow such traffic),
which affects the normal operation of the network. Many man-
agement layers (such as NOX and Onix) expect applications
themselves to avoid or resolve conflicts, but this is difficult
to achieve especially when applications belong to different
users. So it is important for the management layer to provide
a network orchestration mechanism: the capability of resolving
conflicts between different applications.

PANE [14] resolves conflicts between different user-level
applications through Hierarchical Flow Tables (HFTs) [13].
HFTs constitute a policy tree where each node in the tree
stores one or more policy atoms (requests that are installed on
the network). A policy atom is a pair of flow matching rule
and corresponding action. In PANE, a conflict happens when
policy atoms overlap with each other, i.e., there is a flow that
matches more than one policy atom with contradictory actions.

To resolve conflict, when a packet arrives at PANE, PANE
first finds all matching policy atoms in the policy tree, and



applies the conflict-resolution operator based on the positions
of policy atoms in the policy tree, and eventually returns a
single resolved action. A conflict-resolution operator takes
two policy atoms as an input, and returns a resolved action
based on their relation in the policy tree (in-node, parent-child,
or sibling-sibling). Namely, PANE first resolves the conflict
between policy atoms in the same node (in-node), then in
siblings under the same parent node, and lastly resolves the
conflict with the parent node. The semantics of the conflict-
resolution operators need to be predefined by the PANE
administrator and can be extended.

Open Issues: PANE and other work such as Maestro [4]
focus on resolving conflicts between requests sent to the
management layer. However, an important aspect that is not yet
well studied is how to compose different policies (which may
or may not conflict with each other) over different scopes (or
the same scope) in order to achieve better performance in terms
of resource utilization, routing convergence and overhead, etc.

IV. PROPOSED APPROACH: RINA ARCHITECTURE

In the previous section, we pointed out open issues and
weaknesses of existing SDN management layers, including
weak QoS support and manageability. In summary, existing
SDN management layers are tied to the Internet architecture,
which is known to be flawed in many respects such as security,
mobility and QoS support. Tied to TCP/IP, this inevitably
introduces these problems into the management layer and
costs more just to work around these problems. The research
community has been trying to improve the SDN management
layer by resorting to ad-hoc patches that resolve issues with
TCP/IP. Taking QoS support as an example, earlier versions of
the OpenFlow protocol only provide operations on forwarding
entries, and do not allow operations on switch queues and
scheduling policies, which are important aspects to support
QoS. Many SDN management layers (such as PANE [14]), in
their attempt to provide QoS support, have to rely on mecha-
nisms such as reservations and prioritized queue management.
Also most existing SDN management layers are limited to
networks within a single administrative domain. And it is not
easy to define new scopes (or subscopes) of management, and
so far there are no common SDN mechanisms to facilitate
collaboration across different administrative domains.

We believe that a better approach is to build a management
architecture on top of a new network architecture that avoids
the shortcomings of the TCP/IP architecture. Our solution is
to adopt the Recursive InterNetwork Architecture (RINA) [7],
[2], which inherently solves such shortcomings by addressing
the communication problem in a fundamental and structured
way.

A. RINA Overview

RINA is based on the fundamental principle that networking
is Inter-Process Communication (IPC) and only IPC. RINA
has two main design principles: (1) divide and conquer (re-
cursion), and (2) separation of mechanisms and policies.

(N-1)-level DIF (N-1)-level DIF

IPC2
(sender /relay/

receiver)

IPC1
(sender/
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IPC3
(sender/
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N-level DIF (Shared State)

DAF (Shared State)

Fig. 6. RINA overview.

As shown in Figure 6, a collection of distributed application
processes with shared state is called a Distributed Application
Facility (DAF), and each DAF performs a certain function
such as weather forecast service or communication service.
A Distributed IPC Facility (DIF) is a specialization of a
DAF whose job is only to provide communication service.
In RINA, application processes talk to each other using the
communication service provided by a certain underlying DIF.
A DIF defines and operates over a certain management scope
(i.e. range of operation in terms of scale and performance
characteristics). Recursively, a DIF that provides a larger com-
munication scope, uses the communication services provided
by multiple lower-level and smaller-scope DIFs.

RINA simplifies the network system by using only two
policy-configurable protocols: (1) the Common Distributed
Application Protocol (CDAP), which is the only application
protocol required and is used for programming network man-
agement and user applications; and (2) the Error and Flow
Control Protocol (EFCP), which is used for data transfer. More
details about the RINA architecture can be found in [7], [2].

B. RINA Policy-based Management Architecture

RINA provides better manageability support with scoping—
it enables recursive dynamic layer (DIF) instantiation [12],
where a DIF (virtual network) with a new management scope
can be dynamically and recursively formed over existing
management scopes supported by underlying DIFs. The new
scope can be a subscope of an existing scope, and more im-
portantly, it can be a larger scope that spans multiple existing
scopes (over multiple management administrative domains),
i.e., RINA supports nested scopes. DIFs over different scopes
can be easily configured with different policies, but they use
the same recursive RINA mechanisms [7].

What’s more, RINA inherently and explicitly supports QoS
through the RINA API [36] to connect application processes.
Due to the explicitness of the QoS request during the connec-
tion allocation phase, RINA can achieve better resource utiliza-
tion, and more importantly, help end-users improve application
performance. The provisioning of QoS can be easily supported
by RINA’s recursive mechanisms, such as flow allocation and
error control, and the management policies can be recursively



composed over different management scopes.
Under the RINA management architecture, the distinction

in SDNs between Southbound API and Northbound API is
eliminated, and these two APIs are merely replaced by the
unified and recursive RINA API, which provides a high-
level (both administrative and user) interface (cf. Section
II-C). Management (and user) applications can be programmed
recursively using the RINA API [33] over different scopes
at different levels. Inspired by RINA, the SPlit ARChitecture
(SPARC) [28] advocates recursive SDN control but its real-
ization exposes recursively an OpenFlow-based API, hence
SPARC suffers from limitations such as being tied to TCP/IP
and not recursing an IPC building block (DIF) that exposes
a high-level abstraction for connecting applications. In other
words, a RINA-based SDN would recursively expose an API
that is programmable through high-level policies, rather than
rules that use low-level information on switches and transport
flows. For example, RINA programmers can simply allocate a
flow with a certain flow policy (such as QoS) using application
(or service) names as follows:

Flow f low = new Flow ( srcAppName , destAppName , p o l i c y ) ;
a l l o c a t e ( f low ) ;

On the other hand, NOX programmers have to deal with flow
rules on each switch (cf. Table I), and PANE programmers
have to specify transport flow details such as IP address, port
number and protocol type (cf. Table II).

Our RINA management architecture does not build upon
existing SDN (or traditional) network architectures. To de-
ploy RINA, physical nodes should support recursive process
management, as RINA views networking as only inter-process
communication. RINA could also be deployed in the presence
of legacy physical devices through a shim layer (overlay) that
virtually connects RINA-capable nodes and enables their com-
munication. This overlay thus forms the base case for RINA’s
recursive communication service. On top of that, RINA uses its
own recursive mechanisms (e.g., resource allocation, flow and
error control) to provide communication service of different
SLAs (service-level agreements), and manages the network
over different DIFs that can be easily configured with different
policies (e.g. for addressing, routing, and authentication within
each DIF).

Our preliminary work [33], [36], [34], [35] indicates that
RINA’s policy-based architecture enables programming of net-
works to improve their management, thus it offers a promising
direction for SDN.

V. CONCLUSION

In this survey paper, through reviewing existing SDN man-
agement layers, we identified the common management archi-
tecture for SDN networks, as well as the design requirements
of the management layer that is at the core of the archi-
tecture. We also pointed out open issues and weaknesses of
existing management layers, including weak QoS support and
manageability. We proposed and briefly presented a recursive,
policy-configurable approach toward a superior management

of networks. We continue to investigate the benefits of our
approach through analysis and experimentation.
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