An Adaptive Management Approach to Resolving Policy
Conflicts*

Selma Yilmaz**! and Ibrahim Matta?

1 CISCO Systems Inc., 170 West Tasman Drive, San Jose, CA 95134
seyilmaz@cisco.com
2 Computer Science Department, Boston University, Boston, MA 02215
matta@cs.bu.edu

Abstract. The Border Gateway Protocol (BGP) is the current inter-domain rout-
ing protocol used to exchange reachability information among Autonomous Sys-
tems (ASes) in the Internet. BGP supports policy-based routing which allows
each AS to independently define a set of local policies regarding which routes to
accept and advertise from/to other networks, as well as which route the AS prefers
when more than one route becomes available. However, independently chosen lo-
cal policies may cause global conflicts, which result in protocol divergence. We
propose a new algorithm, called Adaptive Policy Management (APM), to resolve
policy conflicts in a distributed manner. Akin to distributed feedback control sys-
tems, each AS independently classifies the state of the network as either conflict-
free or potentially conflicting by observing its local history only (namely, route
flaps). Based on the degree of measured conflicts, each AS dynamically adjusts its
own path preferences—increasing its preference for observably stable paths over
flapping paths. The convergence analysis of APM derives from the sub-stability
property of chosen paths. APM and other competing solutions are simulated in
SSFNet for different performance metrics.

Key words: Inter-domain Routing; Border Gateway Protocol (BGP); Feedback
Control; Convergence Analysis; Simulation.

1 Introduction

BGP plays a major role in the performance of the Internet, and is known to have proper-
ties that are far from ideal. BGP allows policy-based routing; each autonomous system
(AS) independently defines a set of local policies regarding which routes to accept and
advertise from/to other networks, as well as which route the AS prefers when more than
one route becomes available. However, independently defined local policies may lead
to policy conflicts. Policy conflicts occur when neighboring ASes have opposite inter-
ests over routes. Any policy conflict can be resolved by changing the preference of the
ASes over their paths, i.e. local policies.

*This work was supported in part by NSF CNS Cybertrust Award 0524477, CNS ITR Award
0205294, and EIA RI Award 0202067.
**This work was done while Selma Yilmaz was at the Computer Science Department of
Boston University.

2 Selma Yilmaz and Ibrahim Matta

Although not all policy conflicts are harmful, a group of ASes may define conflict-
ing policies that cannot be satisfied simultaneously, causing BGP to diverge. Assume
AS u, v, and z form such group. The scenario of divergence may take place as follows:
When AS u improves its best path, it forces AS v to give up its best path for a less
preferred path, which in turn gives AS z an opportunity to improve its best path, which
forces AS w to give up its best path for a less preferred path, and so on. Each AS in
such conflict repeatedly selects the same sequence of routes, never converging on any
one set of routes. Therefore, route oscillations due to policy conflicts are persistent, and
require some kind of intervention to stop.

Route instabilities taking place across ASes may negatively impact end-to-end net-
work performance and efficiency of the Internet [1]—packets may be dropped or deliv-
ered out of order due to repeated advertising and withdrawal of routes. BGP is crucial
for a healthy and efficient global routing, and thus it is a worthy goal to guarantee con-
vergence of BGP independent of the locally selected policies.

Contribution of This Paper: There have been a number of studies on guaranteeing
safety, i.e. convergence, of BGP independent of the locally selected policies [2], [3],
[4]. In our previous work [5], we introduced the idea of dynamically detecting and sup-
pressing BGP oscillations through probabilistic change of path ranks (preferences). The
algorithm is designed to detect policy conflicts by using local histories only. This pa-
per extends and completes our preliminary idea [5] in many ways: (1) we augment the
algorithm of path rank change so that an AS might choose a less preferred but observ-
ably stable path over a more preferred but oscillating path, thus it becomes natural for
an AS to implicitly assign a higher cost (and hence less preference value) to oscillating
(flapping) paths; (2) with new additions, the algorithm enables the nodes to dynamically
adapt to any state of the network. After the system stabilizes, we let the nodes attempt
to (conservatively) restore some of the original local preference values of their paths,
which they have modified, so as to keep the overall path rank change minimal.?; (3) a
new mechanism is added to distinguish route flaps due to topology changes, so as not
to confuse them with those due to policy conflicts; (4) BGP extensions of the proposed
algorithm are specified; (5) a correctness and convergence analysis of the proposed
algorithm is developed based on the sub-stability property of chosen paths; (6) the pro-
posed algorithm is implemented in the SSFNet simulator [7], and simulation results
for different performance metrics are presented. The metrics also capture the dynamic
performance of our algorithm as well as other competing solutions, thus exposing often
neglected aspects of performance. Although our exposition is BGP-specific, the prob-
lem of inconsistent policies at independent distributed entities is more general.

The paper is organized as follows: Section 2 reviews background and related work.
Section 3 describes our algorithm. Results and future work are presented in Sections 4
and 5, respectively.

3Akin to distributed recovery mechanisms, e.g. congestion avoidance of TCP [6]. As we
indicate later, the adaptation of local preference values of paths may also be influenced by input
from local AS administrators.

An Adaptive Management Approach to Resolving Policy Conflicts 3

Fig. 1. An example of a divergence. Permitted paths are shown next to each node. Longer paths
are more preferred than shorter paths. Current best paths are underlined. Due to the cyclic conflict,
this group of nodes cannot reach a stable state and keep oscillating between the shown states.

2 Background

2.1 Border Gateway Protocol Abstraction

We use the abstraction of BGP proposed by Griffin et al. [3], which is called Safe Path
Vector Protocol (SPVP). SPVP is a distributed algorithm for solving the so-called Stable
Paths Problem (SPP). This model abstracts away low-level details of BGP and makes
it easier to reason about convergence related issues. In SPP, a network is represented as
an undirected graph, G = (V| E), where V represents the autonomous systems and F
represents BGP sessions. Node 0 is the destination to which all other nodes are trying to
find paths. A path P is a sequence of nodes (v, vk—1, -+, v1,0), such that (v;,v;—1) €
E, forall i,1 < ¢ < k. Paths must be simple, i.e. no repeated nodes. An empty path, e,
indicates that a router cannot reach the destination. Each node v in the graph has a set
of permitted paths, P, to the destination, which are the routes learned from peers, and
allowed by the local policy of the node. Each node v also has a ranking function, A", to
impose an order of preference on the paths, such that more preferable paths have higher
values assigned to them.

Given a node u, and W C P* with distinct next-hops, max(u, W) is defined to be
the highest ranked path in W. A path assignment is a function 7 that maps each node
u to a permitted path. 7 defines the path chosen by each node to reach the destination.
Given a path assignment 7 and a node u, the set of permitted paths that are one-hop
extension of paths through neighbors is defined as

choices(u, m) = {(u,v)7(v)[{u,v} € E}P“.

The path assignment 7 is called stable at node u if w(u) = max(u, choices(u,w)). The
path assignment 7 is called stable if it is stable at every node v € V. If a stable path
assignment 7 exists, an SPP is solvable and every such assignment is called a solution.
An instance of SPP may have no solution.

SPVP is an abstraction of BGP. With this abstraction, each node maintains two data
structures: 7ib(u) is the current path that node w is using to reach the destination, and
rib_in(u < w) denotes the path that has been most recently advertised by peer w and
processed at node u. The set of paths available at node u is updated as

choices(u) = {(u, w)ribin(u < w)|w € peers(u)} (P

4 Selma Yilmaz and Ibrahim Matta

and the best path at u is best(u) = maz(u, choices(u)) and rib(u) = best(u). As long
as node u receives advertisements from its peers, best(u) is recomputed with the most
recent choices(u), and stored in 7ib(u). Just as it is the case with BGP, when u changes
its current path, it notifies its current peers about the change. This may cause the peers to
send advertisements to their peers. The network reaches a stable state when there is no
node which would change its current path to the destination. If such a state is reached,
then the resulting state is the solution of the Stable Paths Problem (SPP). If SPP has no
solution, then SPVP diverges. Figure 1 shows an example of a policy conflict leading
to divergence.

2.2 Prior Solutions to BGP Divergence

In this paper, due to space restrictions, we will focus only on dynamic solutions, which
attempt to detect and resolve policy conflicts at run time. A complete review of previous
solutions can be found in [8].

Safe Path Vector Protocol (SPVP): Griffin et al. [3] suggest extending BGP to
carry additional information called history with each routing update message. A possi-
ble trace of SPVP for the system shown in Figure 1 is shown in Figure 2 (a). History
allows each router to describe the exact sequence of events that led to the selection of
a path as the best path. An event (+P) indicates that the node has chosen path P as
its best path, and P is more preferred than its previous best path. Similarly, an event
(—P) indicates that the node has updated its best path, and this current best path is less
preferred than its previous best path P. A history containing loops is an indication of
a potential protocol divergence. At step 4 of Figure 2 (a), all 3 nodes have a cycle in
the histories of their current best paths. SPVP assumes that such paths are problematic,
and therefore eliminates them. For the assumed timing of events, with SPVP the system
converges to unreachable destination for all nodes.

Since a cycle in the history is a necessary but not sufficient condition for divergence,
there may be false positives. Carrying history with each update creates communication
overhead, and may also reveal private information about the preferences of ASes over
the routes. APM uses the idea of keeping track of history of path changes, but does it
only locally. By keeping histories as local information and avoiding exchanging such
information helps overcome related privacy concerns and communication overhead.

Cobb and Musunuri Algorithm: Cobb et al. [4] propose an algorithm which asso-
ciates an integer cost with each node and exchanges the cost with update messages. The
cost increases monotonically if the system diverges. Therefore, discarding the adver-
tisements from the nodes whose cost is greater than a threshold is suggested. Assuming
threshold value of 2, Figure 2 (b) shows a possible trace of Cobb and Musunuri algo-
rithm for the system. Since the cost of the nodes involved in the same conflict grows in
tandem, all of the nodes simultaneously give up their most preferred paths and stabilize
on their lowest preferred paths.

A weakness of this algorithm is keeping per node cost, which causes aggregation
of the paths through the same node. One flapping path may cause all the alternative
paths (through the same node) to be eliminated. With APM, we extend the idea of using
count to keep per-path state at each node instead of per-node state, which prevents ag-
gregation of the paths through the same node. Empowered with this extra information

An Adaptive Management Approach to Resolving Policy Conflicts 5

@'T’; Ei history ";D;E 5‘53 best path §§ ég local history path preferences
7| 8 8 s
of1| 0 | o 0[1](10) |((10),1) (130)>(10)
o1 aom ¢ (10 2[(20) |((20), 1) (210)>(20)
2|0 | © 210 | o 3((30)_|((30).1) (320)>(30)
3130) | o 310 | 30) 1] 1] (130)| ((130),1),((10),1) | (130)>(10)
130 +130) 1] 0 | (130 2/ (210)[((210).1),((20).1) | (210)>(20)
3| (320)] ((320),1),((30),1) (320)>(30)
2/ @1 210 2|0 | 10
@10y (+210) 3l 0 | 320 2/ 1{(10) |((130).1),((10).2) | (130)>(10)
3] (320)] (+320) - 2[20) [(210).1).20).2) | 210)>(20)
2[1[(10) | (-130)(+320) 201 1| a10) 3[(30) |((320).1.(30)2) | (320)>(30)
21 (20) | (-210)(+130) 201 | Q0 3 1[(130)[((130),2),((10),2) | (130)>(10)
3130) | (-320)(+210) 301 (30) 2((210)|((210),2),((20),2) | (210)>(20)
320).2).f 320)>(30)
11130 R 3l 1 | 30 3[(320)| ((320).2).((30).2) | (
3| 1] (130)| (+130)(-320)(+210) 2l 210 4 1] (10) | ((130),2),((10),3) | count(10)> min_threshold
21(210)] (+210)(-130)(+320) (210) change ra}ilnkﬁvuh proballi)lllly113/2
3] (320)| (+320)(210)(+130) 3| (320) assume this happens: (10)>(130)
] s al1] 2 | ao 2/ @0) | (@102@03) |G ektay 17
4 ;}1'9')/ -10;??52;:7;3; 212 | 2o assume this does not happen: (210)>(20
[C210))+ - +
3% 210)(-130 3] 2 | 30) 3160) {20203 |cpumGOZmin et 1
- (:320)|(+210)(-130) {+320) 501 | count(3)>2, assume this does not happen: (320)>(30)
5|1 (-10) won’t use (130) 5(1[(10) | stabilizes on lower | (10)>(130)
2l (-20) will stabilize on (10) gre'f_?‘rrbeld a{]flh
3 30 2| count(1)>2, .\f(“-‘{ e.pd ¢
€ (-30) won’t use (210) 2| (210)] slal}llne& ondmost (210)>(20)
- referred ane
will stabilize on (20) l?ivanlab]e path
1
3|emmza, | [3) G0 el shpost | om0
will stabilize on (30) available path
(a) (b) (©)

Fig. 2. Possible traces of the algorithms for the system shown in Figure 1: (a) SPVP; (b) Cobb and
Musunuri algorithm assuming threshold value for count is 2; (¢) APM with min _threshold =
2.

together with probabilistic update of path ranks, APM can pinpoint the paths causing
problems, and lead to fewer path elimination.

3 Adaptive Policy Management (APM)

We propose a new algorithm to dynamically detect and eliminate policy conflicts lead-
ing to BGP divergence. The idea is to locally detect the paths involved in a conflict, and
eliminate the conflict by changing the relative preference of such paths. Note that such
adaptation is limited to the node’s set of permitted paths, any of which the AS is willing
to use albeit at different preference level.

Each node involved in a particular conflict observes route flaps: Constantly chooses
a path as its best path and later gives it up for another path. For example, in Figure 1,
node 1 constantly upgrades its current best path to (130), but later it is forced to give
up (130) for its less preferred path (10) as a result of its neighbors’ response to this
upgrade. The nodes observing constant route flaps can stop such behavior by sticking
to their less preferred but more stable path, even when a better alternative is advertised.
This can be achieved by changing the local preference of the paths. When the node
stops advertising the paths alternately, the cyclic effect of the global conflict will be
broken. In Figure 1, for example, if node 1 changes its local preferences to prefer (10)
over (130), the system stabilizes on the following path assignment: (10)(210)(30).

To be able to locally detect route flaps and the paths whose preference is causing

6 Selma Yilmaz and Ibrahim Matta

divergence, each node needs to keep some form of local history. We suggest keeping
track of the paths that have been recently selected as best path, and their counts indicat-
ing how many times the path has been chosen as best path and later given up. Figure 2
(c) shows how counts keep increasing during divergence of the system shown in Figure
1. Nodes involved in the conflict can detect divergence by comparing counts against a
threshold called min_threshold. Since the algorithm we are proposing is distributed
and based on using only local information, there may be many nodes synchronously
detecting the same conflict and lowering the preferences of their higher preferred paths.
If we assume min_threshold=2 for each node in Figure 2 (c), at step 4, all 3 nodes
simultaneously change their local preferences to prefer their shorter paths, which are
more stable in the sense that they are always available. Note that the conflict can be
broken even if only one of the nodes performs the path rank change. To prevent this
kind of simultaneous and unnecessary path preference changes, we suggest changing
relative preferences with probability 1/2.

Because of the probabilistic adjust-
ment of path preferences, even though the
effect of a particular conflict is observed count
several times, it is possible that the con- max_threshold----------------—-><"----
flict remains unresolved. max_threshold
is introduced to handle such cases: When = minthreshold ~---- >~ ----------m---
the count associated with a particular

path exceeds max_threshold, the path is time
removed from the set of permitted paths, Policy ~ Policy Policy
Conflict Conflict Conflict
and ad'ded 'to the bad paths set, B. The Free Avoidance Control
paths in this set are excluded from fur- Phase Phase Phase

ther consideration in the best path selec-
tion process (until they are restored as the
algorithm adapts to a conflict-free state),
even if they are advertised by peers and
permitted by original local policies.

Comparing counts against min_threshold, and max_threshold helps each node
independently classify the state of the network: (a) Policy conflict-free phase: When
counts are smaller than min_threshold, the node assumes that there is no persistent
oscillation; (b) Policy conflict-avoidance phase: If any count value exceeds
man_threshold, but stays lower than max_threshold, the node assumes that there is a
policy conflict leading to persistent oscillation, which can be avoided by changing the
relative preference (rank) of the paths; (c) Policy conflict-control phase: If any count
exceeds max_threshold, the path associated with this count is added to a set of bad
paths, and excluded from further consideration in the best path selection process. Fig-
ure 3 shows these three different phases of our algorithm.

Subsections 3.1 and 3.2 more formally describe APM.

Fig. 3. Phases of APM.

3.1 Update Handling

Figure 4 shows the pseudo-code of our Adaptive Policy Management (APM) scheme
for handling routing updates. The process runs at each node w in response to a received

An Adaptive Management Approach to Resolving Policy Conflicts 7

update. When node u chooses a path p € P as its best path, it informs its peers by
sending an update message. rib(u) indicates the current best path to the destination se-
lected at node w. rib_in(u <= w) indicates the most recent path sent from w € peers(u),
and processed at node u. The set of path choices available at node u that are considered
for best path selection, excluding the bad paths in B(u), is defined as
choicesp(u) = {(u, w)rib-in(u < w) — B(u)|w € peers(u)} P

and the best path as bests(u) = maxz(u, choicesg(u)). As long as node u receives ad-
vertisements from its peers, best g (1) is recomputed with the most recent choices g (u).
When rib(u) changes, node u notifies its peers by sending an update message.

To find the stable paths, peerStability is associated with each peer. When a peer

//Update Handling
process APMS_Update_Handling[u]
receive Update m frompeer w —
keepaliveCount(w)=0
ifrib_in(u < w) #m then
peerStability(w)++
rib_in(u <= w) =m
if rib(u)# bestp(u) then
P,jq=rib(u)
P = bestp(u)
if (Pew # €) then
count(Ppe,)++
if count(P,c,,) > max_threshold then
//Policy Conflict-Control Phase
B(w) =B(w) U {Prcu}
Ppew = bestp(u)
count(Q))=0 for each path Q) € local History
peerStability(v)=0 for each v € peers(u)
else if count(P,.,,) > min_threshold then
do with probability= 1/2
//Policy Conflict—Avoidance Phase
find the most preferred safe path, Py,
rank(Pyqfe)=1
Pacw = Poaje
count(Q)=0 for each path Q) € local History
peerStability(v)=0 for each v € peers(u)
if Py # Poq then
rib(w) =Pey
for each v € peers(u) do
send rib(u) to v
Note: The code to the right of the —=
is assumed to be executed in one atomic step .

Fig. 4. APM: Update Handling.

advertises a path different from its previously advertised path, the peerStability of the
peer increases. peerStability of 1 indicates that the path advertised by the peer has not
changed over time. The paths advertised by such peers are referred to as safe paths. A
node observing a route flap can stop the flap by making the safe path its most preferred

8 Selma Yilmaz and Ibrahim Matta

//Keepalive Handling
process APMS_Keepalive_Handling[u]
receive keepalive fromw -
keepaliveCount(w)++
ifkeepaliveCount(v) > ka_threshold for every v € peers(u)
for each v € peers(u)
r=rib_in(u < v)
if (localpref(r) # originallocalpref(r)) || (r € B(u)) then
do with probability= 1/4
if 7 € B(u) then
remove r from B(u)
localpref(r)= originallocalpref(r)
count(Q)=0 for each path Q) € local History
peerStability(v)=0 for each v € peers(u)
keepaliveCount(v)=0 for each v € peers(u)
P,ep=best(u)
if P, #ribu) then
rib(u) =Pew
for each v € peers(u) do
send rib(u) to v

Note: The code to the right of the ——=
assumed to be executed one atomic step

Fig. 5. APM: Restoring Local Preferences once Stability is Reached.

path, i.e. rank(safe path) = 1. Note that count values associated with paths in local
history cannot be used to measure stability of peers. A path p advertised by w may have
a high count value associated with it, even if w never changes this advertisement.

The state of the system is defined by the local state as well as the local preferences
at each node. The state changes whenever there is a path rank change, or a path is placed
in B. In either case, this new state corresponds to a different SPP, possibly a stable one.
Therefore, counters are reset to give opportunity for a fresh start.

3.2 Restoring Local Preferences

When the system stabilizes, only KEEPALIVE messages are exchanged between peers.
Each node keeps track of the number of KEEPALIVE messages received from its peers,
and compares this value against a threshold, denoted by ka_threshold, to test the sta-
bility of the system. Figure 5 shows how node u probabilistically restores some rank
changes for its paths after the system has stabilized. Since policies are placed for a pur-
pose by each node, such as traffic engineering or security, it is important for ASes not to
change them unless they are conflicting with the policies of other nodes and absolutely
necessary to eliminate route oscillations. Although it is safe to restore rank changes
that do not compromise the current stability, there is no way for node u to know which
changes are safe to restore. Therefore, node u uses a probabilistic (albeit more con-
servative) approach, and risks introducing instability back into the system. Contrary to
update handling, node w increases the local preference of a path with a much smaller
probability, 1/4. We allow for bringing paths out of B with probability 1/4 as well. If
node u performs a rank change and/or remove (restore) a path from B, counters kept in

An Adaptive Management Approach to Resolving Policy Conflicts 9

the local history are reset because this new state corresponds to a different SPP.

Note that the much smaller probability for reset, i.e. 1/4, provides a conservative
way of probing the network state, thus oscillating in the vicinity of a stable state at
a very slow rate. This is akin to the congestion avoidance mechanism of TCP, during
which the current state of the network is probed at a slower rate.

We refer the reader to [8] for the convergence analysis of APM.

4 Simulation Results

We have simulated the algorithms in the SSFNet simulator [7]. We only present one set
of results and refer the reader to [8] for additional results.
We have compared APM against the SPVP algorithm [3], Cobb and Musunuri algo-

Node Permitted Paths Local Preference
1 120) 100
10 80
paths learned from 8 1
7 (78120) 100
7810) 100
70) 80
paths learned from 19 1
8 890) 100
§8 10) 80
8120) 80
paths learned from 20 1
9 29 70) 100
90)
paths learned from 21 1
Node Permitted Paths Local Preference
19 (1920890) 100
§19 20810) 100
19208 120) 100
1970) 80
1978120) 80
197810) 80
20 520 2190) 100
2021970) 100
220 89 Og 80
20810 80
(208120) 80
21 §21 1970) 100
211978120) 100
21197810) 100
2190) 80
21970) 80

Fig. 6. Path Rankings for Topology Used in Simulation (Only for the top portion is shown; rest is
symmetric).

rithm [4], and BGP4 [9], where the details of these algorithms can be found in Section
2.2. The variations of APM include using different values for max_threshold of 3 and
10. min_threshold is set to 2, and ka_threshold is set to 6. We have two versions of
the Cobb and Musunuri algorithm, where the threshold for node cost is set to either 3
or 10 to be consistent with the max _threshold value of APM. Griffin et al. [3] sug-
gest suppressing routes only after seeing the same policy cycle multiple times to handle
transient oscillations. In our simulations, we suppressed the routes only after seeing the

10 Selma Yilmaz and Ibrahim Matta

same policy cycle twice. This is consistent with the min _threshold value we have cho-
sen for APM. To be able to observe throughput and delay, we have used the topology
shown in Figure 7. There are 7 groups of nodes: {AS 1, AS 2, AS 3}, {AS 4, AS 5, AS
6}, {AS 7, AS 8, AS 9}, {AS 10, AS 11, AS 12}, {AS 13, AS 14, AS 15}, {AS 16, AS
17, AS 18}, {AS 19, AS 20, AS 21}. Each node in a group prefers the path through its
clockwise neighbor, which creates a policy conflict for each group. Permitted paths and
path preferences are shown in Figure 6.

Simulation is run for 350 seconds, and data flow from servers to clients continues

AST | ___ AS8 T ______
| 1, [Client Hos{
I ‘\
| T A 1 N B oA
o]
1 . ‘ E|i
LN AL [2| o
,,,,,,, g
, [Client Fost] =k
7z
AS 1, N/ 20!
1 £
!)
AS 0 . S
Client Hosts ™~ 7 A
al'y
I =
jm— ‘ HHS
| =)
115 =1
| Server Hosts & :
] &)
| . |
I =}
15] _o el
ey
| Qlw
| | g2
| 2|, 00
AS 3 | ||
I I 3\
I I i\
o~ I 2
asal o oass |] , |
i |[Client Hos} [[Server Hos} | 0
[} }723
I L=

fffff ol

Fig. 7. Topology.

for the duration of the simulation. Buffer size is 50000 bytes, and routing packets are
given priority over data packets when there is congestion at the buffers. The perfor-
mance plots presented next show 90% confidence intervals for the metrics.

Figure 8 shows the percentage of the nodes that cannot reach the destination AS 0.
SPVP and the Cobb and Musunuri algorithms eliminate a high number of paths while
enforcing stability, and therefore leave a higher number of nodes with unreachable des-

An Adaptive Management Approach to Resolving Policy Conflicts 11

100

" APM (maxth=3) ——

APM (maxth=10) +--x---

SPVP -
Cobb&Musunuri(count_th=3) ---&--
Cobb&Musunuri(count_th=10) -- -

-3
S
T

-3
S
T

40 -

20 \ B

Percentage of nodes that cannot reach destination

n

S ¥ ——i

50 100 150

O ¥ ——
Sk
S

S
N
=3
2]

350
Time (sec)

Fig. 8. Percentage of nodes that cannot reach the destination.

160000 T T

APM (maxth=3) +—+— x»——/—~><'*“"’
APM (maxth=10) =----+ 7
SPVP - !

140000

BGP4
Cobb&Musunuri(count_th=3) -
120000 Eobb&Musunuri(count_th=10) -

100000 |- i 1

§ i a e
2 80000 [iy -
< B
60000 =i Ry > b £
40000 R
20000 1
0 L L L
50 200 250 300 350

Time (sec)

Fig. 9. Power.

tination. Different versions of APM perform much better than SPVP and the Cobb and
Musunuri algorithms. With APM, a higher max_threshold value helps resolve policy
conflicts through changing path preferences, and therefore minimize the number of path
eliminations. For max_threshold=10, the system stabilizes to a state where each node
has a way to reach the destination. A higher threshold value also helps the Cobb and
Musunuri algorithm achieve better performance, but the improvement is not much be-
cause of the simultaneous elimination of the paths through the same high cost node.
Figure 9 shows the results for power. This metric is used to measure the ratio of
throughput (average total number of packets delivered over the last 50 seconds) and
delay (average delay of delivered packets over the last 50 seconds). The power metric
captures the desire of achieving as high throughput as possible while keeping delay as
small as possible. Different versions of APM have higher power value than SPVP and
the Cobb and Musunuri algorithms because APM maximizes throughput. The different
performance for throughput stems from both unreachable destinations, and/or compe-
tition for the limited buffer size. SPVP and the Cobb and Musunuri algorithms leave a

12 Selma Yilmaz and Ibrahim Matta

higher number of nodes with unreachable destination (Figure 8). SPVP has the longest
update messages, which take longer to process and require more memory to be stored
in the buffers. Although BGP4 causes constant exchange of updates due to divergence,
its performance is better than SPVP and the Cobb and Musunuri algorithms! This is
because BGP4 does not cause permanent path elimination, even though some packets
may not reach the destination temporarily due to instability.

S Summary and Future Work

Unlike static centralized solutions (e.g. Gao et al. [2] algorithm) which may lead to
unnecessary elimination of many routes from the start to guarantee stability, APM is a
dynamic distributed algorithm allowing ASes to adapt to the current state of the net-
work, either conflict free or potentially conflicting. In this paper, we demonstrated the
superiority of APM over other dynamic algorithms [3], [4].

If only some of the nodes in the network were upgraded to deploy APM, APM still
can catch and resolve policy conflicts since the algorithm is based on only local infor-
mation kept at each node. However, in such heterogenous settings, the nodes deploying
APM will be the only ones which may give up their preferred paths for the sake of
network stability without knowing whether or not the other nodes are working for the
same purpose. As future work, to be able to improve cooperation among ASes to deploy
APM, incentives should be proposed.

To increase the transparency of APM, we plan to investigate allowing local AS ad-
ministrators to explicity guide the backoff and recovery probabilities for lowering and
restoring the ranks of paths. With such human input, it may be possible to resolve policy
conflicts in a more efficient way albeit at a longer timescale. We are currently working
on developing a prototype implementation of APM.

References

1. Govindan, R., Reddy, A.: An Analysis of Interdomain Routing Topology and Route Stabil-
ity. In: Proceedings of the Conference on Computer Communications (IEEE Infocom), Kobe
Japan (April 1997)

2. Gao, L., Rexford, J.: Stable Internet Routing without Global Coordination. In: Proceedings
of ACM SIGMETRICS, Santa Clara CA (June 2000)

3. Griffin, T., Wilfong, G.: A Safe Path Vector Protocol. In: Proceedings of IEEE INFOCOM,
Tel Aviv Israel (March 2000)

4. Cobb, J.A., Musunuri, R.: Enforcing Convergence in Inter-Domain Routing. In: Proceedings
of IEEE Global Communications (GLOBECOM) Conference, Dallas TX (December 2004)

5. Yilmaz, S., Matta, I.: A Randomized Solution to BGP Divergence. In: Proceedings of the 2nd
IASTED International Conference on Communication and Computer Networks (CCN’04),
Cambridge MA (November 2004)

6. Jacobson, V.: Congestion Avoidance and Control. In: ACM SIGCOMM ’88, Stanford CA
(August 1988) 314-329

7. SSFNet: Scalable Simulation Framework: http://www.ssfnet.org

8. Yilmaz, S., Matta, I.: An Adaptive Management Approach to Resolving Policy Conflicts.
Technical Report BUCS-TR-2006-008, CS Department, Boston University (May 2006)

9. Rekhter, Y., Li, T.: A Border Gateway Protocol RFC 1771, 1995.

