SEP: A Stable Election Protocol for clustered heterogeneous wireless sensor networks

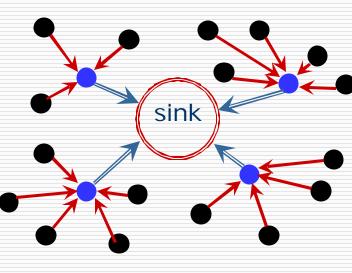
Ibrahim Matta

Joint work with

Georgios Smaragdakis and Azer Bestavros

http://www.cs.bu.edu/groups/wing

Heterogeneous WSN


- Nodes have different energy levels
- Initial setting, after some operation time, or after re-energizing some sensors

Routing

- □ Goal:
 - prolong network lifetime/coverage
- □ Direct transmission to sink
- Min-energy routing
- Sensing process can become biased
- □ LEACH Low Energy Adaptive Clustering Hierarchy [Heinzelman et al., 2000]

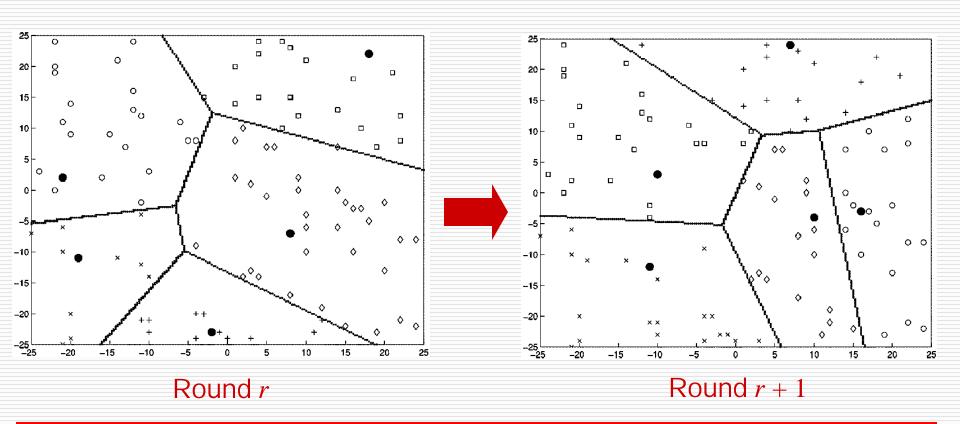
Cluster-head node

Selecting Cluster-heads in LEACH*

- InterNet Working Co.
- □ Node *i* chooses random number, *s*, between 0 and 1
- ☐ If s < T(i), node i becomes a cluster head in current round where:

$$T(i) = \begin{cases} \frac{P}{1 - P \times (r \mod \frac{1}{P})} & \text{if } i? G \\ 0 & \text{otherwise} \end{cases}$$

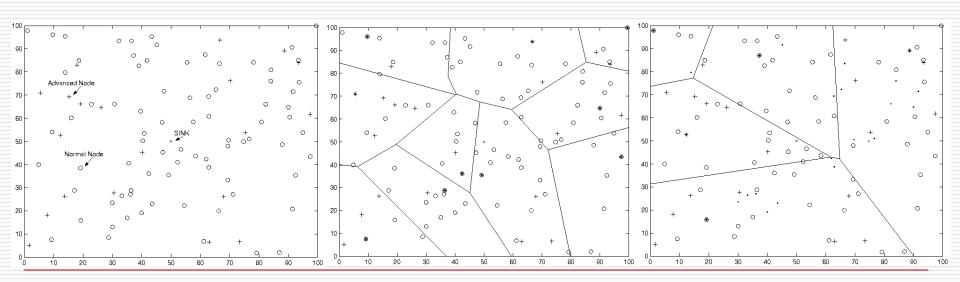
where:


P = desired percentage of cluster heads

G = set of nodes that have not been a cluster head in the last 1/P rounds

- □ Each node is elected cluster-head once every 1/P rounds (epoch length)
- \square On average, $n \times P$ nodes elected per round
 - = n = total number of nodes

Rotating Cluster-heads

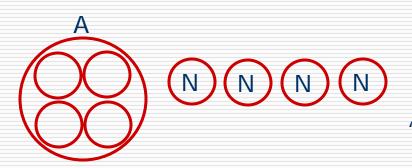


When all nodes start with the same energy level (i.e., homogeneous setting), nodes "randomly" die and within a short period

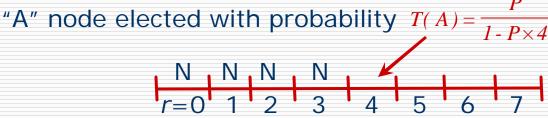
But in a heterogeneous environment...?

- The result of initial setting or evolution of the sensor network's operation
 - "advanced" node has α times more energy than "normal" node
- Once the first node dies, feedback and cluster-head election stays unreliable for a long time
 - advanced nodes don't get elected as often as they should

Naïve Modification to LEACH



- □ View network as homogeneous
 - Every "virtual" node is "normal" with unit energy
 - We have $n + \alpha \times m \times n = n (1 + \alpha \times m)$ "virtual" nodes $\square m = \text{fraction of nodes that are advanced}$
- \square Extend epoch length to $(1+\alpha \times m)/P$ rounds
- ☐ Hope is:
 - Each normal node is elected cluster-head once every epoch
 - Each advanced node is elected cluster-head (1+α) times every epoch
 - This ensures well balanced energy consumption

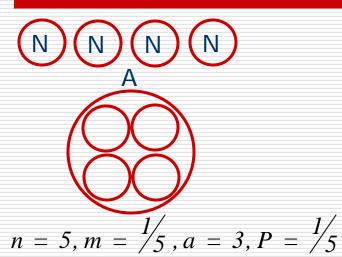

Problem with Naïve Solution

- Probability of electing an advanced node is not weighted by its additional energy
 - advanced nodes may be underutilized
 - Lifetime is prolonged, but time until the first node dies can still be short!

$$n = 5, m = \frac{1}{5}, a = 3, P = \frac{1}{5}$$

Our SEP (Stable Election Protocol)

- □ **Idea:** force each advanced node to be elected every sub-epoch of length $(1+\alpha \times m)/P/(1+\alpha)$ rounds
- \square Probability of a normal node getting elected as cluster-head is P_{normal}
- Probability of an advanced node getting elected as cluster-head is P_{advanced}
- ☐ Average number of nodes elected per round = nxP


$$P_{normal} = \frac{P}{1 + a \times m}$$

$$T(i) = \begin{cases} \frac{P_{normal}}{1 - P_{normal} \times (r \mod \frac{1}{P_{normal}})} & \text{if } i ? G_{normal} \\ 0 & \text{otherwise} \end{cases}$$

$$P_{advanced} \equiv \frac{1}{1+a \times m} (1+a)$$
 $T(i) = \{ \begin{array}{c} \frac{P_{advanced}}{1-P_{advanced} \times (r \, mod \, \frac{1}{P_{advanced}})} & \text{if } i? \, G_{advanced} \\ 0 & \text{otherwise} \end{array} \}$

Numerical Example

Our SEP Scheme

$$P_{normal} = \frac{P}{1 + a \times m} = \frac{1/3}{1 + 3 \times 1/5} = \frac{1}{8}$$

$$\frac{P_{normal}}{1 + a \times m} = \frac{1/3}{1 + 3 \times 1/5} = \frac{1}{8}$$
if i? G_{normal}

$$T(i) = \{ egin{array}{c} rac{P_{normal}}{1 - P_{normal} imes (r mod rac{1}{P_{normal}})} & if i? G_{normal} \ 0 & otherwise \ \end{array} \}$$

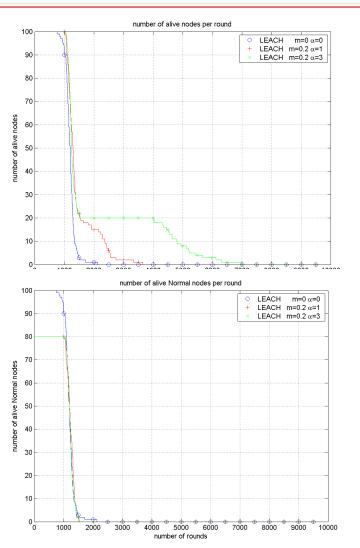
$$P_{advanced} = \frac{P}{1+a \times m}(1+a) = \frac{1}{8}(1+3) = \frac{4}{8}$$

$$T(i) = \{egin{array}{c} rac{P_{advanced}}{1 - P_{advanced} imes (r \, mod \, rac{1}{P_{advanced}})} & if \, i? \, G_{advanced} \ 0 & otherwise \ \end{array} \}$$

Performance Measures

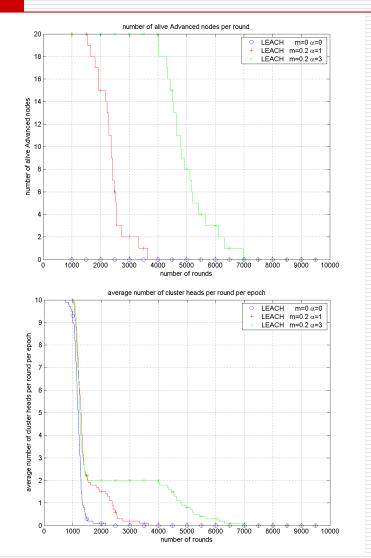
- Stability Period
 - Time until death of the first node
- Network lifetime
 - Time until death of the last alive node
- Number of cluster-heads per round
 - Nodes which will directly send aggregated information to the sink
- Number of alive nodes of each type per round
- □ Throughput
 - Rate of data reporting to cluster-heads and to sink

Simulation Model

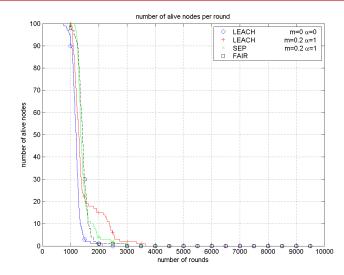


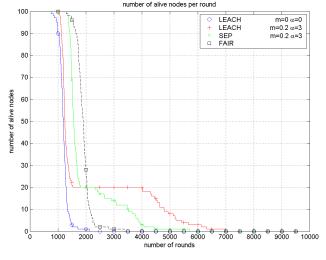
- □ Two networks
 - 100 nodes uniformly distributed over 100mx100m
 - 900 nodes uniformly distributed over 300mx300m
- □ Sink is in the center of the sensor field
- ☐ Message size = 4000 bits
- \square Initial energy for a normal node = 0.5 Joules
- Energy consumed depends on radio characteristics

Results for LEACH


- □ LEACH does not take full advantage of the extra energy of advanced nodes
- Normal nodes die very fast
 - Sensing field becomes sparse very fast
 - Election process becomes unstable fast
 - ☐ Throughput is low

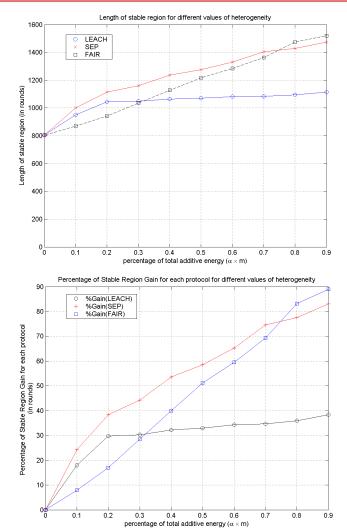
Results for LEACH (cont'd)


- Advanced nodes die very slowly
 - They are not elected as often as they should
 - ☐ Throughput is low



Results for SEP

- □ SEP takes full advantage of the extra energy of advanced nodes
 - Stable region increases by up to 26% over LEACH
 - Higher throughput
- Advanced nodes follow the death process of normal nodes
 - Smaller unstable region



Sensitivity of SEP

- □ Performance depends on the product m x a
- □ FAIR: ideal distribution of extra energy
- Gain in stability period
 (over system with no extra energy, i.e., m=0 & α=0) is maximized under SEP
 - SEP > LEACH
 - SEP > FAIR for up to 75% relative extra energy

Conclusion

- ☐ SEP is heterogeneous-aware
 - Cluster-heads elected based on node's energy relative to that of others
- ☐ SEP is scalable and dynamic
 - Even normal node can be elected
 - No global knowledge required at every round
 - No prior distribution of energy levels assumed
- Study SEP for more than 2 hierarchical levels and more than 2 types of nodes
- ☐ Implementation in Berkeley/Crossbow motes
- Deployment issues
 - Dynamic updates of weighted election probabilities
 - Integration with power-aware MAC protocols
 - ...

For more information, please check http://csr.bu.edu/sep/